論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
具氧化鈦-氧化鋁作為閘極氧化層與源極或汲極蕭特基穿隧能障層磷化銦金氧半電晶體之研製與特性分析 Fabrication and Characterization of InP MOSFET with TiO2/Al2O3 For Gate Oxides and Source or Drain Schottky Tunneling Barrier |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
125 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2014-07-25 |
繳交日期 Date of Submission |
2014-08-18 |
關鍵字 Keywords |
原子層沉積法、二氧化鈦、非對稱蕭特機能障場效電晶體、磷化銦 InP, TiO2, asymmetrical Schottky barrier MOSFET, ALD |
||
統計 Statistics |
本論文已被瀏覽 5804 次,被下載 0 次 The thesis/dissertation has been browsed 5804 times, has been downloaded 0 times. |
中文摘要 |
本研究利用原子層沉積系統(ALD)生長氧化鋁和氧化鈦薄膜於磷化銦基板上,作為金氧半場效電晶體之閘極氧化層與源極或汲極蕭特基穿隧能障(asymmetrical Schottky barrier MOSFET)。首先,為了使界面能有良好的特性先使用硫化銨溶液減少在基板表面上的原生氧化層,未經硫化銨處理過的磷化銦基板與鋁金屬形成的蕭特基二極體結構,其蕭特基能障 (ΦBp)為0.341 eV,在經硫化銨處理過後,其蕭特基能障大幅上升至0.538 eV,意味會造成介面態密度的原生氧化層借由硫化銨處理去除,使得蕭特基能障不再受費米能階釘札(Fermi level pinning)的影響,為了改善閘極氧化鈦薄膜的品質,研究氧化鈦與氧化鋁雙層結構改善單層氧化鈦之特性,並可藉由氧化鋁自我清潔能力改善氧化層與基板之界面,使閘極漏電流由單層氧化鈦的2.48 × 10-5 和 8.08 × 10-3 降至1.49 × 10-8 和 2.03 × 10-6 A/cm2 at ± 2 MV/cm。此外,為了改善元件縮小化產生之短通道效應所引起之漏電流,採用蕭特基超淺接面深度的特性做為源極與汲極改善短通道效應,而經硫化處理過之磷化銦基板與鋁金屬形成的蕭特基接觸電阻值來到2.1 × 109 Ω,所以我們在磷化銦基板與鋁金屬之間加入穿隧氧化層以降低能障 (ΦBn)來提高電流,分別研究三種加了介電層結構的蕭特基穿隧二極體來作為源極與汲極區域,在這三種結構中發現加了氧化鋁與氧化鈦雙層結構在逆向偏壓下電流來的最大。而此應用在蕭特機穿隧能障電晶體(Schottky tunneling barrier MOSFET)的源極與汲極上能有效提升飽和電流,但是在關閉(off-state)的情況下由於能障的降低也造成漏電流有所提升,為了降低漏電流我們將穿隧能障氧化層的結構只應用在源極,而汲極區域的高能障能夠使得漏電流能在關閉(off-state)的狀態下有效降低,並且保有與蕭特機穿隧能障電晶體相近之飽和電流,進而提高電晶體之ION/IOFF的比例來到十的五次方。 |
Abstract |
In this study, the thin titanium oxide (TiO2) film and aluminum oxide (Al2O3) films which was used as gate oxides of InP asytmmetrical Schottky barrier MOSFET were deposited on InP substrate that was prepared by atomic layer deposition (ALD). First, in order to having good quality of interface, the (NH4)2S solution is a good method to reduce surface native oxide on InP. The Al/InP Schottky diode’s Schottky barrier height (ΦBp) is 0.341 eV without sulfur treatment. The Al/InP Schottky barrier height is promoted to 0.538 eV after sulfur treatment. Therefore, Schottky barrier will not be influenced by Fermi level pinning with fewer native oxide. we made of improvement quality for existing titanium oxides, using double stack of titanium oxide (TiO2) and aluminum oxide (Al2O3) by ALD can be used to improve single layer of TiO2. Al2O3 of ALD has self-cleaning which could improve interface quality between oxide and substrate, the leakage current densities can reach 2.48 × 10-5 and 8.08 × 10-3 reduce to 1.49 × 10-8 和 2.03 × 10-6 A/cm2 at ± 2 MV/cm. Besides, in order to reduce leakage current from the short channel effects which are caused by device scaled. We used Schottky contact which has ultra shallow junction depth. The contact resistance of Al/InP is 2.1 × 109 Ω after InP with sulfur treatment. So, we investigate three structures of Schottky tunneling barrier diodes in inserting dielectrics as source/drain regions. From my experiments can be found the double layers of Al2O3/TiO2 has the highest current at reverse bias in these three structures. This Schottky tunneling barrier structure used in Schottky tunneling barrier MOSFET source and drain regions which can promote saturation current.But the leakage current increase which is caused by reduction of Schottky barrier height at off-state. In order to reduce leakage current we only used Schottky tunneling barrier structure in source region. Therefore, the drain region with high Schottky barrier height can reduce leakage current at off-state and it has similar saturation current to Schottky tunneling barrier MOSFET. Therefore, the ION/IOFF ratio is reach 105. |
目次 Table of Contents |
論文審定書 i ACKNOWLEDGMENT ii 中文摘要 iii ABSTRACT iv LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 1 Introduction 1 1-1 Developments in gate dielectric 1 1-2 Properties of TiO2 3 1-3 Comparison of deposition methods of TiO2 4 1-4 Advantages of ALD 5 1-5 Drawback of TiO2 for MOSFETs 6 1-6 Drawbacks of SB on III-V compound semiconductors 7 1-7 Mechanism and the structure model of InP with sulfur treatment 10 1-8 Properties of Al2O3 10 1-9 ALD-TiO2/Al2O3 on (NH4)2S treated III-V compound semiconductor structure 11 1-10 Principle of Schottky tunneling barrier 14 1-11 III-V asymmetrical Schottky barrier MOSFET 14 1-11-1 Operation principle for the n-ASBMOSFET in channel 16 Chapter 2 29 Experiments 29 2-1 Al2O3 and TiO2 are prepared by ALD 29 2-1-1 CVD theorem 29 2-1-2 Deposition system of ALD 30 2-1-3 Properties of source materials 31 2-2 Structure procedures and film depositions 32 2-2-1 III-V wafer cleaning and sulfidation procedures 32 2-2-2 Preparation of Al2O3/TiO2 stack films 33 2-2-3 Al metal and In-Zn alloy cleaning processes 33 2-2-4 Electrodes fabrication 34 2-2-5 Preparations of Al/Al2O3/InP、Al/TiO2/InP and Al/Al2O3/TiO2/InP Schottky tunneling barrier diode with (NH4)2S treatment 34 2-2-6 Preparations of Transmsion Line Model (TLM) to measure asymmetrical Schottky barrier structure 35 2-3 Characterization 35 2-3-1 Physical properties 35 Chapter 3 49 MOS with Various Gate Structures Characteristics of ALD-TiO2 and ALD-TiO2/Al2O3 on S-InP 49 3-1 TEM cross section of TiO2/Al2O3/S-InP structure 49 3-2 I-V characteristics of TiO2/Al2O3 stacked dielectrics on (NH4)2S treated on InP 49 3-3 C-V characteristics of Al2O3/TiO2 stacked dielectrics on (NH4)2S treated on InP 50 3-4 Tentative conclusion 52 Chapter 4 57 Characteristics of Schottky Tunneling Barrier Diodes and Asymetrical Schottky Barrier TLM 57 4-1 Electrical characteristics of Al/S-InP diode 57 4-2 Electrical characteristics of Al/Al2O3/S-InP diode 57 4-3 Electrical characteristics of Al/TiO2/S-InP diode 59 4-4 Electrical characteristics of Al/Al2O3/TiO2/S-InP diode 60 4-5 Electrical characteristics of TLM measured the symmetrical and asymmetrical Schottky barrier structure 61 4-6 Tentative conclusion 62 Chapter 5 82 Electrical Characteristics of Enhancement-mode n-Channel InP Asymmetrical Schottky Tunneling Barrier MOSFET 82 5-1 Fabrication process of enhancement-mode n-channel asymmetrical Schottky barrier MOSFET with ALD- TiO2 /Al2O3 as gate oxides on S-InP 82 5-2 Electrical characteristics of enhancement-mode n-channel asymmetrical Schottky barrier MOSFET with ALD-TiO2/Al2O3 as gate oxides on S-InP 83 5-3 Tentative conclusion 86 Chapter 6 97 Conclusion 97 References 99 |
參考文獻 References |
[1] http://www.intel.com/technology/mooreslaw/ [2] R. Paily, A. DasGupta, N. DasGupta, P. Bhattacharya, P. Misra, T. Ganguli, L. Kukreja, A. K. Balamurugan, S. Rajagopalan, A. K. Tyagi, “Pulsed laser deposition of TiO2 for MOS gate dielectric, “Applied Surface Science, 187, p. 297, 2002. [3] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, p 5243, 2001. [4] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res., 16, pp.1838-1849, 2001. [5] G.D. Wilk, R.M. Wallace, and J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, pp.5243, 2001. [6] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217, 2002. [7] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995. [8] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p.316, 1973. [9] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996. [10] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980. [11] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90, pp.5896-5900, 1986. [12] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of SiO2-TiO2 thin-film with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998. [13] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998. [14] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-film by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997. [15] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chem. Commun., pp. 569-570, 2001. [16] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides” Thin Solid Film, vol. 323, pp. 59-62, 1998. [17] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-film with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996. [18] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium dioxide rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp.13023-13032,1995. [19] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “ Effects of Thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 film on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001. [20] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995. [21] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-film,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994. [22] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977. [23] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991) [24] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., vol. 428, pp. 25-32, 1997. [25] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp.224-228, 2003. [26] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258. [27] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989. [28] R. D. Shannon, and J. A. Pask,” Kinetics of the Anatase-Rutile Transformation” , J. Am. Ceram. Soc., vol. 48, p. 391,1965. [29] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003. [30] O. Harizanov, and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000. [31] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin film on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003. [32] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Film, vol. 391, pp. 133-137, 2001. [33] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin film by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000. [34] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide film produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998. [35] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 film prepared by reactive evaporation,” Thin Solid Film, vol. 371, pp. 218-224, 2000. [36] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002. [37] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 film sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002. [38] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-film prepared by R.F. magnetron sputtering method,” Surf. Coat.Technol., vol. 155, pp. 141-145, 2002. [39] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin film by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997. [40] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin film: effect of growth temperature and plasma gas composition,” Thin Solid Film, vol. 371, pp. 126-131, 2000. [41] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium oxide film obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000. [42] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 film prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002. [43] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 film prepared by pulsed laser deposition,” Thin Solid Film, vol. 401, pp. 88-93, 2001. [44] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-film by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002. [45] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002. [46] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-film,” Appl. Surf. Sci., vol. 185, pp.47-51,2001 [47] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-film produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997. [48] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-film on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002. [49] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide film prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000. [50] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 film prepared by liquid-phase deposition,” Thin Solid Film, vol. 371, pp. 148-152, 2000. [51] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998. [52] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-film by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997. [53] T. Suntola, Mater.” Atomic layer epitaxy” , Sci. Rep. 4, 261 (1989). [54] J. W. Lim, H. S. Park, and S. W. Kang, J. Appl. Phys. 88, 6327 (2000). [55] M. Leskela¨, M. Ritala,” Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films 409, 138 (2002) [56] M. Ritala, M. Leskela, J. P. Dekker, C. Mutsaers, P.J. Soininen, J. Skarp, Chem. Vap. Depos. 5 (1999) 7. [57] M. Ritala, K. Kukli, A. Rahtu, et al. ,” Atomic layer deposition (ALD): from precursors to thin film structures ”, Science 288 (2000) 319. [58] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics”, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997. [59] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Minamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jpn. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000. [60] M. Kadoshima, M. Hiratani, Y. Shimamoto, K.Torii, H. Miki, S. Kimura, and T. Nabatame,“Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp. 224-228, 2003. [61] S.M. Sze, Physics of Semiconductor Devices. New York Wiley, 1981, pp. 379-390. [62] Y. Tao, A. Yelon, E. Sacher, Z.H. Lu, M.J. Graham, “S-passivated InP(100)-(1×1) surface prepared by a wet chemical process,” Appl. Phys. Lett., vol. 60, pp. 2669- 2671, 1992. [63] C. Engler, J. Dittmar, T. Chasse, “Stability of sulfur induced reconstructions on InP(001) surfaces,” Surface Sci. vol. 495, pp. 55-67, 2001. [64] E. P. Gusev, E. Cartier, D. A. Buchanan, et al., “Ultrathin high-K metal oxides on silicon: processing, characterization and in-tegration issues,” Microelectronic Engineering, vol. 59, no. 1–4,pp. 341–349, 2001. [65] D. Buchanan, IBM J. Res. Dev. 43, 245 (1999) . [66] L. Feldman, E. P. Gusev, and E. Garfunkel, in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by E. Garfunkel, E. P. Gusev, and A. Y. Vul’ ~ Kluwer Academic, Dordrecht, (1998), p. 1. [67 ] L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris, R. L. Opila, P. J. Silverman, T. W. Sorsch, and G. R. Weber, Tech. Dig. Int. Electron Devices Meet. 1998, 605 (1998). [68] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. Gladfelter, and J. Yan, IEEE Trans. Electron Devices 44, 104 (1997). [69] J. A. Aboaf, J. Electrochem. Soc. 114, 948 (1967). [70] M. T. Duffy and A. G. Revesz, J. Electrochem. Soc. 117, 372 (1970). [71] M. T. Duffy and W. Kern, RCA Rev. 31, 754 (1970). [72] M. K. Lee, C. F. Yen, and S. H. Lin, “Electrical Improvements of MOCVD-TiO2 on (NH4)2Sx-Treated InP with Postmetallization Annealing,” J. Electrochem. Soc., vol. 154, no. 10, pp. G229-G233, Aug. 2007. [73] Y. Q. Wu, Y. Xuan, T. Shen, P. D. Ye, Z. Cheng and A. Lochtefeld, “Enhancement-mode InP n-channel metal-oxide-semiconductor field-effect transistors with atomic-layer-deposited Al2O3 dielectrics,” Appl. Phys. Lett., vol. 91, no. 2, pp. 022108-022108-3, July. 2007. [74] Y. Hwang, R. E. Herbert, N. G. Rudawski, and S. Stemmer, “Analysis of trap state densities at HfO2/In0.53Ga0.47As interfaces,” Appl. Phys. Lett., vol. 96, no. 10, pp. 102910-102910-3, Mar. 2010. [75] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Tran. Electron Devices, vol. 44, no. 1, pp. 104-109, Jan. 1997. [76] Steven M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, pp. 111-131, Jan. 2010. [77] M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, no. 8, pp. 1099-1101, Dec. 1996. [78] R. Iyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B., vol. 6, no. 4, pp. 1174-1179, Jul. 1988. [79] D. N. Gnoth, D. Wolfframm, A. Patchett, S. Hohenecker, D. R. T. Zahn, A. Leslie, I. T. McGovern, and D. A. Evans, “A comparison of S-passivation of III-V(001) surfaces using (NH4)2Sx and S2C12,” Appl. Surf. Sci., vol. 123-124, pp. 120-125, Jan. 1998. [80] Z. L. Yuan, X. M. Ding, B. Lai, and X. Y. Hou, E. D. Lu, P. S. Xu, and X. Y. Zhang, “Neutralized (NH4)2S solution passivation of III–V phosphide surfaces,” Appl. Phys. Lett., vol. 73, no 20, pp. 2977-2979, Nov. 1998. [81] H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, “Low-temperature InP/GaAs wafer bonding using sulfide-treated surface,” Appl. Phys. Lett., vol. 88, no. 6, pp. 061104-061104-3, Feb. 2006. [82] Shinya Morikita, Tomoyuki Motegi and Hideaki Ikoma , “Improved Electrical Characteristics of Al2O3/InP Structure by Combination of Sulfur Passivation and Forming Gas Annealing,” Jpn. J. Appl. Phys. vol. 38, no. 12B, pp. L1512-L1514, Dec. 1999. [83] Y. T. Chen, H. Zhao, Y. Wang, F. Xue, F. Zhou, and J. C. Lee,” Effects of fluorine incorporation into HfO2 gate dielectrics on InP and In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors,” Appl. Phys. Lett.,96, 253502 (2010). [84] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee,R. Nakane, Y. Urabe, N. Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi, “Self-aligned Metal S/D InP MOSFETs using Metallic Ni-InP alloys,” 23rd International Conference on IPRM 2011. [85] Moongyu Jang,Yarkyeon Kim, Jaeheon Shin, and Seongjae Lee, Kyoungwan Park, “A 50 nm-gate length erbium-silicided n-type Schottky barrier metal oxide semiconductor field-effect transistor”, Appl. Phys. Lett., Vol. 84, No. 5, 741-743. [86] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee,R. Nakane, Y. Urabe, N. Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi “Self-aligned Metal S/D InP MOSFETs using Metallic Ni-InP alloys”, IPRM ,2011 [87] W.Saitoh, A. Itoh, S. Yamagami, and M. Asada, ”Analysis of short-channel Schottky source/drain Metal-Oxide-Semiconductor field-effect transistor on Silicon-on-Insulator substrate and demonstration of sub-50 nm n-type devices with metal gate,” Jpn. J. Appl. Phys., Part1 38, 6226 (1991) [88] Sheng-Pin Yeh, Chun-Hsing Shih, Jeng Gong and Chenhsin Lien” Latent noise in Schottky barrier MOSFETs”, Journal of Statistical Mechanics: Theory and Experiment. [89] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technol., pp. 512, 2000. [90] E. H. Rhoderick and R. H. Williams, Metal Semiconductor Contacts, 2nd Edn. Clarendon Press,Oxford, (1988). [91] Y. P. SONG, R. L. VAN MEIRHAEGHE, W. H. LAFLER and F. CARDON, “On the Difference in Apparent Barrier Height as Obtained from Capacitance-Voltage and Current-Voltage-Temperature Measurements on Al/p-InP Schottky Barriers”, Solid-State Electronics. Vol. 29, No. 6, pp. 633638, 1986. [92] M. S. Carpenter, M, R. Malloch, and T. E Dungan, “Effects of Na2S and (NH4)2S edge passivation treatments on the dark current‐voltage characteristics of GaAs pn diodes”, Semicond. Appl. Phys. Lett. 53, 66, 1988. [93] K. Martens, W. Wang, K. De Keersmaecker, G. Borghs, G. Groeseneken, and H. Maes, Microelectron. Eng. 84, 2146 (2007). [94] H. D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, E. Garfunkel, and T. Gustafsson, Phys. Status Solidi C 7, 260 (2010). |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 18.117.167.132 論文開放下載的時間是 校外不公開 Your IP address is 18.117.167.132 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 永不公開 not available |
QR Code |