Responsive image
博碩士論文 etd-0719122-130249 詳細資訊
Title page for etd-0719122-130249
論文名稱
Title
兩種運用鎖頻迴路之 自我注入鎖定生理雷達
Two Self-Injection-Locked Vital Sign Radars Using a Frequency-Locked Loop
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-08-10
繳交日期
Date of Submission
2022-08-19
關鍵字
Keywords
生理雷達、鎖頻迴路、自我注入鎖定雷達、偵測零點、頻率偏移
Vital-sign radar, frequency-locked loop, self-injection-locked (SIL) radar, null detection point, frequency shift
統計
Statistics
本論文已被瀏覽 261 次,被下載 0
The thesis/dissertation has been browsed 261 times, has been downloaded 0 times.
中文摘要
近年來,各種微波雷達開始應用於生理雷達中,而連續波雷達是最常見的雷達之一。經過一段時間改良,發展出自我注入鎖定雷達,能夠達到更優越的靈敏度,偵測細微的人體因心肺活動造成的胸腔起伏,但其受到偵測零點及頻率偏移的影響,促使靈敏度惡化。因此,本論文使用兩種自我注入鎖定雷達分別解決偵測零點及頻率偏移的問題。
第一種雷達是最佳相位追蹤自我注入鎖定雷達,主要在接收端加上鎖頻迴路,因為鎖頻迴路內主動濾波器的性質,能將整體迴路的相位保持在90度而使偵測靈敏度最佳化,避免偵測零點的狀況發生。第二種雷達是頻率與自我注入鎖定雷達,在訊號解調端加入鎖頻迴路,能有效降低雷達訊號源的頻率偏移現象,並能縮短雷達解調器之延遲線長度。此外,前者在靈敏度表現上,能夠偵測較細微的人體胸腔起伏,達到更佳的生理訊號監測效果。後者則能藉由相移器控制鎖頻迴路之頻率,達成雷達調整頻率的功能。
Abstract
In recent years, a variety of microwave radars have been used for sensing vital signs. Continuous-wave (CW) radars are one of the commonly seen microwave radars for this purpose. After a long period of improvement, self-injection-locked (SIL) CW radars have been developed to achieve superior sensitivity and thereby detect tiny chest movements due to vital signs. However, they suffer from the effects of null detection points and frequency shifts which often degrade their sensitivity performance. Therefore, this study proposes two SIL radars to overcome the problems of null detection points and frequency shifts, respectively.
The first proposed radar is an optimal SIL (OPTSIL) radar that can always operate at the optimal detection points. It adds a frequency-locked loop (FLL) to the receiving end of the radar. This FLL keeps its phase at 90 degrees by using an active loop filter to optimize the detection sensitivity of the radar and avoid the occurrence of null detection points. The second proposed radar is a frequency- and self-injection-locked (FSIL) radar that uses an FLL at the demodulating end of the radar to reduce the frequency shift of the radar source signal. Moreover, this FLL can aid in shortening the length of the delay line used in the radar’s demodulator. As a result, with the help of FLL, the former can enhance the sensitivity performance to detect slighter chest movements for better vital sign monitoring. The latter can adjust the radar’s operating frequency by controlling the phase of the FLL with a phase shifter.
目次 Table of Contents

論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 x
第一章 緒論 1
1-1 研究背景與動機 1
1-2 生理雷達發展起源 2
1-3 章節規劃 7
第二章 最佳相位追蹤自我注入鎖定雷達 8
2-1自我注入鎖定迴路及鎖頻迴路推導與分析 8
2-1-1自我注入鎖定迴路推導與分析 8
2-1-2 鎖頻迴路雷達分析 12
2-2 最佳相位追蹤自我注入鎖定雷達推導與分析 16
2-2-1 時域分析 16
2-2-2 頻域分析 17
2-2-3 訊噪比分析 19
2-3 最佳相位追蹤自我注入鎖定雷達系統實現 20
2-4 最佳相位追蹤自我注入鎖定雷達實驗結果 23
2-4-1 最佳點偵測實驗 23
2-4-2 生理訊號偵測實驗 30
第三章 頻率與自我注入鎖定雷達 34
3-1 頻率與自我注入鎖定雷達推導與分析 34
3-1-1 時域分析 35
3-1-2 頻域分析 36
3-1-3 訊噪比分析 38
3-2 頻率與自我注入鎖定雷達系統 39
3-3 雙天線頻率與自我注入鎖定雷達系統 42
3-3-1 鎖頻效果實驗 42
3-3-2 雷達頻率調整實驗 45
3-3-3 生理訊號偵測實驗 45
3-4 單天線頻率與自我注入鎖定雷達系統 49
3-4-1 鎖頻效果實驗 49
3-4-2 頻率調整實驗 51
3-4-3 生理訊號偵測實驗 51
第四章 結論與未來展望 54
4-1 靈敏度測試補充 54
參考資料 55

參考文獻 References
[1] 使用 Apple Watch 監測心率, Apple Inc. [online]. Available: https://support.apple.com/zh-tw/HT204666
[2] Polar H10 藍牙無線心率傳輸帶組, JOHNSON Inc. [online]. Available: https://www.johnsonfitness.com.tw/prod/?q=H10#prettyPhoto.
[3] Heart rate monitor, Wikimedia Foundation, Inc. [online]. Available: https://en.wikipedia.org/wiki/Heart_rate_monitor
[4] Radar during World War II, ETCW [online]. Available: https://ethw.org/Radar_during_World_War_II
[5] C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. 22nd Asia-Pacific Microw. Conf., Yokohama, Japan, Dec. 2010, pp. 283–290.
[6] I. Immoreev and T.-H. Tao, “UWB radar for patient monitoring,” IEEE Aerosp. Electron. Syst. Mag., vol. 23, pp. 11–18, Nov. 2008.
[7] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013.
[8] Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review, MDPI Inc. [online]. Available: https://www.mdpi.com/1424-8220/16/8/1169/html
[9] M. Mercuri, Y.-H. Liu, I. Lorato, T. Torfs, A. Bourdoux, and C. van Hoof, “Frequency-tracking CW Doppler radar solving smallangle approximation and null point issues in non-contact vital signs monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 671–680, Jun. 2017.
[10] Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a Doppler radar sensor,” in IEEE Radio Wireless Symp. Dig., Jan. 2010, pp. 196–199.
[11] R. Rasshofer and E. Biebl, “A direction sensitive, integrated, low cost Doppler radar sensor for automotive applications,” Microwave Symposium Digest, 1998 IEEE MTT-S International, vol. 2, pp. 1055– 1058 vol.2, June 1998.
[12] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[13] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement can-cellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[14] F.-K. Wang, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Displacement monitoring system based on a quadrature self-injection-locked radar technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 1363–1366.
[15] Z. Brezovic, and V. Kudjak, “Optimization PLL synthesizer with active RC notch filters.” in Proc. 19th Int. Conf. Radioelektronika, Apr. 2009.
[16] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital sign detection Doppler radar based on phase locked self-injection oscillator,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012.
[17] E. C. Herleikson, “RF signal generator single-loop frequency-synthesis, phase noise-reduction, and frequency-modulation,” Hewlett Packard J., vol. 40, no. 5, pp. 27–33, Oct. 1989.
[18] E. Ayranci, K. Christensen, and P. Andreani, “Enhancement of VCO linearity and phase noise by implementing frequency locked loop,” in Proc. Int. Conf. Comput. Tool, Sep. 2007, pp. 2593–2599.
[19] C. J. Li, C. H. Hsiao, F. K. Wang, T. S. Horng, and K. C. Peng, “A rigorous analysis of a phase-locked oscillator under injection,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1391–1400, May 2010.
[20] 宋孟哲,具備相位追蹤能力之生理感測雷達研究,國立中山大學電機工程學系 碩士論文,2020
[21] 穿戴裝置也能量測心跳或偵測心律不整?到底智慧型手錶與運動手環怎麼選?line today [online]. Available: https://today.line.me/tw/v2/article/Y3VOYW
[22] K.-C. Peng, M.-C. Sung, F.-K. Wang, and T.-S. Horng, “Noncontact vital sign sensing under nonperiodic body movement using a novel frequencylocked-loop radar,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 4762–4773, Nov. 2021.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2032-08-19
校外 Off-campus:開放下載的時間 available 2032-08-19

您的 IP(校外) 位址是 3.137.180.62
現在時間是 2024-11-22
論文校外開放下載的時間是 2032-08-19

Your IP address is 3.137.180.62
The current date is 2024-11-22
This thesis will be available to you on 2032-08-19.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2027-08-19

QR Code