Responsive image
博碩士論文 etd-0719122-150602 詳細資訊
Title page for etd-0719122-150602
論文名稱
Title
發展全人類DLK1抗體對於卵巢癌的診斷及治療
Development of Fully Human DLK1 Antibody for Diagnosis and Therapy of Ovarian Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-07-14
繳交日期
Date of Submission
2022-08-19
關鍵字
Keywords
DLK1、高分化級別漿液性卵巢癌、單鏈抗體、全人類抗體、卵巢癌
DLK1, HGSOC, scFv, fully human antibody, Ovarian cancer
統計
Statistics
本論文已被瀏覽 132 次,被下載 0
The thesis/dissertation has been browsed 132 times, has been downloaded 0 times.
中文摘要
卵巢癌是一種致命的婦科癌症,由於卵巢癌早期診斷的困難,因此患者被發現罹癌時通常已是癌症晚期,而造成治療上的難題,並且伴隨著預後不佳以及存活率較差的情況。根據實驗室先前的研究發現,在高分化級別漿液性卵巢癌 (High grade serous ovarian cancer, HGSOC) 中delta-like 1 homolog (DLK1) 的表現量會較高,而藉由基因工程knockdown DLK1後,會降低HGSC的惡性程度,因此指出DLK1具有做為早期卵巢癌診斷的生物指標。而實驗室先前利用phage display技術篩選出四支DLK1 single-chain fragment variable (scFv) 抗體,作為發展治療卵巢癌的目標。在此研究中,我們將scFv anti-DLK1片段克隆到pET-28a,生產四支scFv DLK1,抗體,分別作用在高分化級別漿液性卵巢癌細胞SKOV3及低度分化漿液性卵巢癌細胞MPSC1上,發現scFv anti-DLK1#1,具有最佳抑制SKOV3和MPSC1的侵略能力和菌落形成能力,接著挑選scFv anti-DLK1 #1和#2克隆到帶有全人類抗體骨架的載體中,利用Expi293細胞生產、製作成全人類IgG抗體,而發現anti-DLK1 #1和#2具有抑制SKOV3細胞侵略、菌落形成和自我新生的能力,且也使用兩支DLK1抗體開發專用的ELISA檢驗組,根據實驗結果顯示,希望未來將此抗體應用於診斷及治療卵巢癌。
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies. Due to the difficult detected in early stage. Usually, when patients were diagnosed at late stage in ovarian cancer, leading to unfavorable prognosis and poor survival rate. According to our previous research, delta-like 1 homolog (DLK1) has high expression in high-grade serous ovarian cancer (HGSOC) and with gene knockdown DLK1 has reduced malignant in HGSOC. Therefore, DLK1 can be a potential therapeutic target in ovarian cancer. Our previous phage display screening have identified four single-chain fragment variable (scFv) anti-DLK1 with phage display technique, that as an object developed to therapeutic ovarian cancer. We subcloned scFv anti-DLK1 fragments into pET-28a vector then purified 4 different scFv anit-DLK1 proteins, which were employed for treatment in high-grade serous ovarian cancer and low-grade serous ovarian cancer are SKOV3 and MPSC1, respectively. The scFv anti-DLK1#1 was most effective in inhibiting the invasion and colony formation of SKOV3 and MPSC1 cells. Subsequently, scFv anti-DLK1 #1 and #2 were sucloned into human IgG vectors then tranfected into Expi293 cells for generation of fully human IgG antibody. The anti-DLK1#1 and #2 remained capable of inhibitingthe invasion, colony formation and self-renewal in SKOV3 cells. The two fully human anti-DLK1 were develop ELISA assay kit. These findings suggest that fully humanized anti-DLK1 may be applicable to the diagnosis and treatment of ovarian cancer.
目次 Table of Contents
INDEX
論文審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
FIGURES AND LEGENDS INDEX vi
INTRODUCTION 1
MATERIALS AND METHODS 7
RESULTS 15
DISCUSSION 20
FIGURES AND LEGENDS 23
APPENDIX 54
REFERENCES 56



參考文獻 References
REFERENCES
1. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
2. Devouassoux-Shisheboran, M. and C. Genestie, Pathobiology of ovarian carcinomas. Chin J Cancer, 2015. 34(1): p. 50-5.
3. Reid, B.M., J.B. Permuth, and T.A. Sellers, Epidemiology of ovarian cancer: a review. Cancer Biol Med, 2017. 14(1): p. 9-32.
4. Berek, J.S., et al., Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. International Journal of Gynecology & Obstetrics, 2021. 155(S1): p. 61-85.
5. Society, A.C. Ovarian Cancer Stages. [Internet] 2018; Available from: https://www.cancer.org/cancer/ovarian-cancer/detection-diagnosis-staging/staging.html#written_by.
6. Lheureux, S., M. Braunstein, and A.M. Oza, Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin, 2019. 69(4): p. 280-304.
7. Dilley, J., et al., Ovarian cancer symptoms, routes to diagnosis and survival - Population cohort study in the 'no screen' arm of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Gynecol Oncol, 2020. 158(2): p. 316-322.
8. Doubeni, C.A., A.R. Doubeni, and A.E. Myers, Diagnosis and Management of Ovarian Cancer. Am Fam Physician, 2016. 93(11): p. 937-44.
9. Stewart, C., C. Ralyea, and S. Lockwood, Ovarian Cancer: An Integrated Review. Seminars in Oncology Nursing, 2019. 35(2): p. 151-156.
10. Bonifácio, V.D.B., Ovarian Cancer Biomarkers: Moving Forward in Early Detection, in Tumor Microenvironment : The Main Driver of Metabolic Adaptation, J. Serpa, Editor. 2020, Springer International Publishing: Cham. p. 355-363.
11. Enterina, J.R., et al., DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert Review of Respiratory Medicine, 2017. 11(9): p. 749-761.
12. Rocha, S.T.d., et al., Genomic imprinting at the mammalian <em>Dlk1-Dio3</em> domain. Trends in Genetics, 2008. 24(6): p. 306-316.
13. Falix, F.A., et al., Possible roles of DLK1 in the Notch pathway during development and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2012. 1822(6): p. 988-995.
14. Rodríguez, P., et al., The non-canonical NOTCH ligand DLK1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovasc Res, 2012. 93(2): p. 232-41.
15. Huang, C.C., et al., Soluble delta-like 1 homolog (DLK1) stimulates angiogenesis through Notch1/Akt/eNOS signaling in endothelial cells. Angiogenesis, 2018. 21(2): p. 299-312.
16. Traustadóttir, G.Á., et al., The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine & Growth Factor Reviews, 2019. 46: p. 17-27.
17. Li, H., et al., Serum DLK1 is a potential prognostic biomarker in patients with hepatocellular carcinoma. Tumour Biol, 2015. 36(11): p. 8399-404.
18. Grassi, E.S., et al., Niche-derived soluble DLK1 promotes glioma growth. Neoplasia, 2020. 22(12): p. 689-701.
19. Huang, C.C., et al., Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling. Oncogene, 2019. 38(17): p. 3201-3215.
20. Chen, L., et al., Delta-like 1/fetal antigen-1 (Dlk1/FA1) is a novel regulator of chondrogenic cell differentiation via inhibition of the Akt kinase-dependent pathway. J Biol Chem, 2011. 286(37): p. 32140-9.
21. Komatsu, H., et al., OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol, 2008. 6(8): p. e196.
22. D'Souza, B., L. Meloty-Kapella, and G. Weinmaster, Canonical and non-canonical Notch ligands. Curr Top Dev Biol, 2010. 92: p. 73-129.
23. Xu, X., et al., DLK1 as a potential target against cancer stem/progenitor cells of hepatocellular carcinoma. Mol Cancer Ther, 2012. 11(3): p. 629-38.
24. Hadjidemetriou, I., et al., DLK1/PREF1 marks a novel cell population in the human adrenal cortex. J Steroid Biochem Mol Biol, 2019. 193: p. 105422.
25. Grassi, E.S., V. Pantazopoulou, and A. Pietras, Hypoxia-induced release, nuclear translocation, and signaling activity of a DLK1 intracellular fragment in glioma. Oncogene, 2020. 39(20): p. 4028-4044.
26. Li, L., et al., DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on Notch signaling. PLoS One, 2014. 9(3): p. e91509.
27. Stephens, P.J., et al., Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest, 2013. 123(7): p. 2965-8.
28. Wang, K., et al., PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor. Clin Cancer Res, 2015. 21(6): p. 1487-96.
29. Westhoff, B., et al., Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci U S A, 2009. 106(52): p. 22293-8.
30. Falix, F.A., et al., DLK1, a serum marker for hepatoblastoma in young infants. Pediatric Blood & Cancer, 2012. 59(4): p. 743-745.
31. Chi Sabins, N., et al., DLK1: A Novel Target for Immunotherapeutic Remodeling of the Tumor Blood Vasculature. Molecular Therapy, 2013. 21(10): p. 1958-1968.
32. Takagi, H., et al., Delta-like 1 homolog (DLK1) as a possible therapeutic target and its application to radioimmunotherapy using 125I-labelled anti-DLK1 antibody in lung cancer models (HOT1801 and FIGHT004). Lung Cancer, 2021. 153: p. 134-142.
33. Pittaway, J.F.H., et al., The role of delta-like non-canonical Notch ligand 1 (DLK1) in cancer. Endocrine-Related Cancer, 2021. 28(12): p. R271-R287.
34. Bournazos, S. and J.V. Ravetch, Fcγ receptor pathways during active and passive immunization. Immunological Reviews, 2015. 268(1): p. 88-103.
35. Marks, L., The birth pangs of monoclonal antibody therapeutics: the failure and legacy of Centoxin. MAbs, 2012. 4(3): p. 403-12.
36. Wang, S.S., Y.S. Yan, and K. Ho, US FDA-approved therapeutic antibodies with high-concentration formulation: summaries and perspectives. Antib Ther, 2021. 4(4): p. 262-272.
37. Stegmaier, K. and W.R. Sellers, 4 - Targeted Approaches to Drug Development, in Oncology of Infancy and Childhood, S.H. Orkin, et al., Editors. 2009, W.B. Saunders: Philadelphia. p. 57-98.
38. Morgensztern, D. and R.S. Herbst, Nivolumab and Pembrolizumab for Non-Small Cell Lung Cancer. Clin Cancer Res, 2016. 22(15): p. 3713-7.
39. Reck, M., et al., Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med, 2016. 375(19): p. 1823-1833.
40. Jackisch, C., et al., Subcutaneous versus intravenous formulation of trastuzumab for HER2-positive early breast cancer: updated results from the phase III HannaH study. Ann Oncol, 2015. 26(2): p. 320-5.
41. Lu, R.-M., et al., Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 2020. 27(1): p. 1.
42. Smith, G.P., Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985. 228(4705): p. 1315-7.
43. Clackson, T., et al., Making antibody fragments using phage display libraries. Nature, 1991. 352(6336): p. 624-8.
44. Vaughan, T.J., et al., Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol, 1996. 14(3): p. 309-14.
45. McCafferty, J., et al., Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 1990. 348(6301): p. 552-4.
46. Chiu, M.L. and G.L. Gilliland, Engineering antibody therapeutics. Curr Opin Struct Biol, 2016. 38: p. 163-73.
47. Torre, L.A., et al., Ovarian cancer statistics, 2018. CA Cancer J Clin, 2018. 68(4): p. 284-296.
48. Smas, C.M. and H.S. Sul, Molecular mechanisms of adipocyte differentiation and inhibitory action of pref-1. Crit Rev Eukaryot Gene Expr, 1997. 7(4): p. 281-98.
49. Wang, Y. and H.S. Sul, Ectodomain Shedding of Preadipocyte Factor 1 (Pref-1) by Tumor Necrosis Factor Alpha Converting Enzyme (TACE) and Inhibition of Adipocyte Differentiation. Molecular and Cellular Biology, 2006. 26(14): p. 5421-5435.
50. Waddell, J.N., et al., Dlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration. PLOS ONE, 2010. 5(11): p. e15055.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-19
校外 Off-campus:開放下載的時間 available 2026-08-19

您的 IP(校外) 位址是 216.73.216.125
現在時間是 2025-06-01
論文校外開放下載的時間是 2026-08-19

Your IP address is 216.73.216.125
The current date is 2025-06-01
This thesis will be available to you on 2026-08-19.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-08-19

QR Code