論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-08-21
校外 Off-campus:開放下載的時間 available 2025-08-21
論文名稱 Title |
具有數位頻率解調之頻率位移式自我注入鎖定生理感測雷達 Frequency-Offset Self-Injection-Locked Radar with Digital Frequency Demodulation for Vital Sign Monitoring |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
60 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-08-17 |
繳交日期 Date of Submission |
2020-08-21 |
關鍵字 Keywords |
低中頻、電磁干擾、數位頻率解調、生理徵象感測、自我注入鎖定雷達、直流位移、I / Q不平衡 Self-injection locked radar, dc offset, I/Q imbalance, vital sign detection, electromagnetic interference, digital frequency demodulation, low intermediate frequency (IF) |
||
統計 Statistics |
本論文已被瀏覽 5776 次,被下載 0 次 The thesis/dissertation has been browsed 5776 times, has been downloaded 0 times. |
中文摘要 |
本篇論文提出了頻率位移式自我注入鎖定(FOSIL)雷達,通過兩個下混頻器和一個上混頻器將兩個獨立的SIL雷達前端結合在一起,適當地調整兩個振盪器的注入相位和注入振幅,可以使整體系統發射頻率保持恆定。因此,解決了在傳統SIL雷達中感測受測者時的產生的電磁干擾(EMI)問題,並且允許在有限的頻寬內共存多個FOSIL雷達。 此外,本論文使用了數位頻率解調機制的RF混頻器來提取目標相對於雷達的運動資訊,從而降低了系統複雜性,並消除了I/Q不平衡以及直流位移校正的程序。由於減輕了閃爍雜訊並具有較大的都卜勒頻移,系統的SNR顯著提高,可達28 dB。在非接觸式的生理徵象感測實驗中,5.8 GHz ISM頻段FOSIL雷達雛型電路的感測範圍為8公尺,且頻率擺動範圍降低了96%以上。此外,兩個頻率間隔為2 MHz的FOSIL雷達可以分別在同一時間和實驗環境下提供兩個受測者的精確心肺活動。 |
Abstract |
This paper proposes a frequency-offset self-injection-locked (FOSIL) radar, which combines two independent SIL radar front-ends via two down mixers and one up mixer. The transmit frequency can remain constant by properly adjusting injection phases and amplitudes of two oscillators. Therefore the electromagnetic interference (EMI) issue when monitoring a moving subject in conventional SIL radars is resolved, and multiple FOSIL radars are allowed to coexist within a limited bandwidth. Moreover, this work adopts one RF mixer with digital frequency demodulation method to extract the target motion relative to the radar, reducing the system complexity and eliminating I/Q imbalance and dc offset calibration. Due to the mitigated flicker noise and large Doppler shift, the system SNR is significantly improved by 28 dB. In the noncontact vital sign sensing experiments, the 5.8 GHz ISM band FOSIL radar prototype had a sensing range of 8 m, and reduced the frequency swing range over 96%. Moreover, two FOSIL radars with 2 MHz frequency spacing can respectively provide exact cardiopulmonary activities of two aimed subjects at the same time and experimental environment. |
目次 Table of Contents |
論文審定書..................................................................................................................... i 致謝............................................................................................................................... ii 摘要............................................................................................................................... iv Abstract ......................................................................................................................... v 圖次.............................................................................................................................. vii 表次............................................................................................................................... ix 第一章 序論................................................................................................................ 1 1.1研究背景與動機 .................................................................................................. 1 1.2 文獻回顧 ............................................................................................................. 4 1.3 章節安排 ............................................................................................................. 6 第二章 系統架構........................................................................................................ 7 2.1自我注入鎖定雷達簡介 ...................................................................................... 7 2.2 頻率位移式自我注入鎖定雷達系統架構暨理論推導 ..................................... 9 第三章 低中頻架構之數位頻率解調器 ................................................................... 17 3.1數位頻率解調器之原理 .................................................................................... 17 3.2數位頻率解調器之模擬與驗證 ........................................................................ 20 3.2.1 Simulink之頻率解調模擬 ......................................................................... 21 3.2.2 ESG之頻率解調驗證 ................................................................................ 26 第四章 實驗結果........................................................................................................ 29 4.1 雷達之SNR改進量測實驗 ............................................................................. 31 4.2 生理感測實驗 ................................................................................................... 32 4.3 多雷達生理感測實驗 ....................................................................................... 34 4.4 生理感測心跳率可靠性測試實驗 ................................................................... 39 第五章 結論................................................................................................................ 46 參考文獻...................................................................................................................... 47 |
參考文獻 References |
[1] G. C. Smith, “A noncontact method for detecting acoustic emission using a microwave Doppler radar motion detector, ” IEEE Trans.Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 9, pp. 1613-1617, Sept. 2005 [2] C. Chao, T. Hsu and C. Tseng, “Giving Doppler More Bounce: A 5.8 GHz Microwave High-Sensitivity Doppler Radar System,”IEEE Microw. Mag., vol. 17, no. 1, pp. 52-57, Jan. 2016 [3] M. K. Singh et al., “System modeling and signal processing of microwave Doppler radar for cardiopulmonary sensing,”2015 International Conference on Signal Processing and Communication (ICSC), Noida, Mar. 2015, pp. 227-232, [4] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C.Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-signsensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [5] F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation, “ IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4689–4699, Dec. 2013. [6] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1073–1079, May 2007 48 [7] S. Guan, J. A. Rice, C. Li, and C. Gu, “Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3111–3118, Dec. 2014. [8] M. Zakrzewski, H. Raittinen, and J. Vanhala, “Comparison of center estimation algorithms for heart and respiration monitoring with microwave Doppler radar,” IEEE Sensors J., vol. 12, no. 3, pp. 627–634, Mar. 2012 [9] W. Xu, C. Gu, C. Li, and M. Sarrafzadeh, “Robust Doppler radar demodulation via compressed sensing,” Electron. Lett., vol. 48, no. 22, pp. 1428–1430, Oct. 2012. [10] X. Gao and O. Boric-Lubecke, “Radius correction technique for Doppler radar noncontact periodic displacement measurement,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 621–631, Feb. 2017. [11] C.-C. Chou, W.-C. Lai, Y.-K. Hsiao, and H.-R. Chuang, “60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1635–1643, Mar. 2018. [12] T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649–1659, Apr. 2013 [13] T.-Y. Huang, L. F. Hayward, and J. Lin, “Noninvasive measurement and analysis of laboratory rat’s cardiorespiratory movement,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 574–581, Feb. 2017. 49 [14] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1580–1588, Jun. 2010. [15] I. Mostafanezhad, O. Boric-Lubecke, and V. Lubecke, “A coherent low IF receiver architecture for Doppler radar motion detector used in life signs monitoring,” in Proc. IEEE Radio Wireless Symp., New Orleans, LA, Jan. 2010, pp. 571–574. [16] I. Mostafanezhad and O. Boric-Lubecke, “Benefits of coherent low-IF for vital signs monitoring using Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2481–2487, Oct. 2014. [17] C. Wei and J. Lin, “Digitally assisted low IF architecture for noncontact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, Jul. 2015, pp. 1–4. [18] H. Zhao, H. Hong, L. Sun, Y. Li, C. Li, and X. Zhu, “Noncontact physiological dynamics detection using low-power digital-IF Doppler radar,” IEEE Trans. Instrum. Meas., vol. 66, no. 7, pp. 1780–1788, Jul. 2017. [19] X. Ma, L. Li, X. You, and J. Lin, “Envelope detection for a double-sideband low IF CW radar,” in IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, Jun. 2018, pp. 240–243. [20] X. Ma, L. Li, S. Ming, X. You, and J. Lin, “Envelope detection for an ADC-relaxed double-sideband low-IF CW Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5833–5841, Dec. 2018. 50 [21] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods, “ IEEE Sensors J., vol. 19, no. 5, pp. 1905–1916, Mar. 2019. [22] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Phase- and self-injection-locked radar for detecting vital signs with efficient elimination of DC offset and null points, “ IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685–695, Jan. 2013. [23] F. K. Wang, “A Self-Injection-Locked Radar for Non-Contact Vital Sign Detection and See-Through-Wall Imaging”, Department of Electrical Engineering National Sun Yat-sen University Doctorate Dissertation, Jan. 2013. [24] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6 pp. 351-357, Jun. 1946 [25] F. K. Wang, T. S. Horng, K. C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3577–3586, Dec. 2011. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-08-21 校外 Off-campus:開放下載的時間 available 2025-08-21 您的 IP(校外) 位址是 3.142.43.244 現在時間是 2024-11-22 論文校外開放下載的時間是 2025-08-21 Your IP address is 3.142.43.244 The current date is 2024-11-22 This thesis will be available to you on 2025-08-21. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-08-21 |
QR Code |