Responsive image
博碩士論文 etd-0722119-143029 詳細資訊
Title page for etd-0722119-143029
論文名稱
Title
鉍在Au/Si(557)基板上的成長行為與邊界電子態量測的改進
Study of Growth Behavior for Bi on Au/Si(557) Substrate and the Improvement of Edge Electronic State Measurement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-18
繳交日期
Date of Submission
2019-08-22
關鍵字
Keywords
蜂巢狀結構、矽(557)、掃描式穿隧電子顯微鏡、鉍、拓樸絕緣體
Bi, Si(557), Scanning tunneling microscope, Topological insulator
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
早先的研究預測生長於Si(111)-√3✕√3-R30°-Au的鉍蜂巢狀結構(Bi honeycomb structure)具有二維拓樸絕緣體(2D-topological insulator)的性質。STM的結果也近一步應證了鉍確實能在修飾後的矽(111)表面上形成蜂巢狀結構。然而作為實驗上的證據,目前仍未有傅立葉轉換-掃描式穿隧電子能譜(FT-STS)的結果。
對此,在相關的文獻中曾提及,由於會影響到傅立葉轉換後數據的解析度,在進行一維邊緣(edge)的電子態量測時,需要在筆直且沒有缺陷(disorder-free)的邊緣進行。然而在鉍蒸鍍於理論所預測的Au/Si(557) -√3基板後,其邊緣是蜿蜒無規的(meandering)。因此為了嘗試要生長具有長直邊緣的帶狀鉍(Bismuthribbon),我們使用了在原子尺度下仍保有規律性的斜切矽基板Si(557)。
在本研究中,我們透過超高真空(1.0✕10-10Torr) 的環境,分別利用低能量電子繞射儀LEED,以及掃描穿隧式電子顯微鏡STM 觀察鉍於Au/Si(557) -√3基板的生長行為,希望可以提供階梯狀的斜切基板做為生長二維拓樸材料的襯底,並進一步改善其邊緣電子態量測的解方。
Abstract
The Bi honeycomb grown on Si(111)-√3✕√3-R30°-Au substrate has already been predicted as two-dimensional topological Insulators[5]. STM result also shown that Bi form honeycomb structure on top of Au/Si(111) -√3 substrate, which is coincident with the calculation. Experimentalists also try many efforts on the confirmation of its topological edges state by using Fourier-Transform Scanning Tunneling Spectroscopy.

For this concern, previous studies mention that when probing 1D edge electronic state, remarkably straight and disorder-free edge is required. This will influence the resolution of the Fourier transformed data. However, at the system of Au/Si (111) -√3, upon the deposition, initial observation of the image of Bi island shown that its edge is meandering. Therefore, to realize the observation of the surface state of Bi nanoribbon, atomically ordered vicinal surfaces were well prepared as the substrate.

In this study, then, the growth behavior of Bi on Au/Si(557) -√3 substrates is investigated by scanning tunneling microscopy and low energy electron diffraction experiment in the ultrahigh vacuum system (1.0✕10-10 Torr base pressure). This finding may suggest a viable way for using stepped surfaces with atomically accurate hill and valley structures as a potential route for observing QPI on 2D Ti platforms.
目次 Table of Contents
論文審定書i
論文公開授權書ii
誌謝iii
摘要iv
英文摘要v
1 簡介1
2 原理及性質 5
2.1 拓撲絕緣體(Topological insulator) . . . . . . . . . . . . . . . . . . . . 5
2.2 驗證二維拓撲絕緣體的實驗方法. . . . . . . . . . . . . . . . . . . . . 7
2.3 斜切矽基板表面的自組裝結構. . . . . . . . . . . . . . . . . . . . . . 10
3 實驗儀器及原理 13
3.1 實驗環境-超高真空系統(UHV) . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 系統配置與真空簡介. . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 真空量測技術. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 真空抽氣技術. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 腔體處理技術. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 樣品制備與處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 斜切矽基板. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 物理氣相沉積(PVD)技術. . . . . . . . . . . . . . . . . . . . . 24
3.2.3 熱處理(thermal treatment) . . . . . . . . . . . . . . . . . . . . 26
3.2.4 離子濺射(ion sputtering) . . . . . . . . . . . . . . . . . . . . . 26
3.3 表面晶體學(surface crystallography)量測技術. . . . . . . . . . . . . 27
3.3.1 低能電子繞射儀(LEED) . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 掃描式穿隧電子顯微鏡(STM) . . . . . . . . . . . . . . . . . . 35
4 實驗結果與討論 41
4.1 階梯狀矽基板的備製. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 金緩衝層於Si(557)表面的成長行為與結構分析. . . . . . . . . . . . . 48
4.3 鉍蒸鍍於Au/Si(557) 表面的生長與形貌分析. . . . . . . . . . . . . . 52
4.4 斜切基板對於邊界態量測的應用. . . . . . . . . . . . . . . . . . . . . 62
5 結論 63
參考文獻 65
參考文獻 References
[1] Chuang, F.-C. et al. Prediction of two-dimensional topological insulator by forming a surface alloy on Au/Si(111) substrate. Phys. Rev. B 93, 035429 (2016). URL https://link.aps.org/doi/10.1103/PhysRevB.93.035429.
[2] Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nature Physics 10, 664–669 (2014). URL http://dx.doi.org/10.1038/nphys3048. Article.
[3] Ando, Y. Topological insulator materials. Journal of the Physical Society of Japan 82, 102001 (2013). URL https://doi.org/10.7566/JPSJ.82.102001. https://doi.org/10.7566/JPSJ.82.102001.
[4] Qi, X.-L. & Zhang, S.-C. The quantum spin hall effect and topological insulators. arXiv preprint arXiv:1001.1602 (2010).
[5] f ¨ ur Experimentelle Physik II, L. Spm image gallery (2018). URL https://www.ru.nl/spm/research/imagegallery/.
[6] Kirakosian, A. et al. Atomically accurate si grating with 5.73 nm period. Applied Physics Letters 79, 1608–1610 (2001). URL https://doi.org/10.1063/
1.1401788. https://doi.org/10.1063/1.1401788.
[7] Zhachuk, R. & Pereira, S. Comment on “atomic structure model of the reconstructed Si(557) surface with a triple step structure: Adatom-parallel dimer model”. Phys. Rev. B 79, 077401 (2009). URL https://link.aps.org/ doi/10.1103/PhysRevB.79.077401.
[8] Wang, Y.-Y. Temperature Adsorbed Propanal on gold(110) Surface. Master thesis, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan, R.O.C. (2012).
[9] Oura, K., Lifshits, V., Saranin, A., Zotov, A. & Katayama, M. Surface science: an introduction (Springer Science & Business Media, 2013).
[10] L¨ uth, H. Solid Surfaces, Interfaces and Thin Films. Graduate Texts in Physics (Springer International Publishing, 2014). URL https://books.google.com. tw/books?id=nKYxBQAAQBAJ.
[11] Liquidat. Cut through turbomolecular pump (2005). URL https://commons.wikimedia.org/wiki/File:Cut_through_turbomolecular_pump.jpg.
[12] Ltd, M. D. ComCell Effusion Cell Series. Mantis, Unit 2, at Thame 40, Jane Morbey Road, Thame Oxfordshire OX9 3RR (2015).
[13] Services, M. T. E-Beam Evaporator Instructions. McAllister, West 280 Prairie Avenue Coeur d’Alene, Idaho 83815 (2013).
[14] Henzler, M. Leed studies of surface imperfections. Applications of Surface Science 11, 450 – 469 (1982). URL http://www.sciencedirect.com/science/ article/pii/0378596382900927.
[15] Chen, C. J. Introduction to scanning tunneling microscopy oxford university press. New York (1993).
[16] Hansma, P. K. & Tersoff, J. Scanning tunneling microscopy. Journal of Applied Physics 61, R1–R24 (1987).
[17] Hoffman, J. Scanning tunneling microscopy-the basic geometry (2010). URL http://hoffman.physics.harvard.edu/research/STMintro.php.
[18] Barke, I. et al. Coverage-dependent faceting of au chains on Si(557). Phys. Rev. B 79, 155301 (2009). URL https://link.aps.org/doi/10.1103/ PhysRevB.79.155301.
[19] Minoda, H., Shimakura, T., Yagi, K., zu Heringdorf, F.-J. M. & Von Hoegen, M. H. Gold-induced faceting on an si (hhm) surface (m/h= 1.4–1.5) studied by spot profile analyzing low-energy electron diffraction. Surface science 432, 69–80 (1999).
[20] Qi, X.-L. & Zhang, S.-C. The quantum spin hall effect and topological insulators. arXiv preprint arXiv:1001.1602 (2010).
[21] Cottin, M. C. et al. Interplay between forward and backward scattering of spin–orbit split surface states of bi(111). Nano Letters 13, 2717–2722 (2013).
URL https://doi.org/10.1021/nl400878r. PMID: 23672457, https://doi.org/10.1021/nl400878r.
[22] Kim, S. H. et al. Edge and interfacial states in a two-dimensional topological insulator: Bi(111) bilayer on Bi2Te2Se. Phys. Rev. B 89, 155436 (2014). URL https://link.aps.org/doi/10.1103/PhysRevB.89.155436. [23] Huang, Z.-Q. et al. Tunable topological electronic structure of silicene on a semiconducting Bi/Si (111)-√3×√3 substrate. Phys. Rev. B 90, 245433 (2014). URL https://link.aps.org/doi/10.1103/PhysRevB.90.245433.
[24] Chou, H.-L. Study of the Structural and Electronic properties for the Bi on decorated Si(111) surface. Master thesis, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan, R.O.C. (2015).
[25] Nieh, S.-W. Study of Growth Behavior and Electronic Properties for Co on Bi. Master thesis, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan, R.O.C. (2017).
[26] Konig, M. et al. Quantum spin hall insulator state in hgte quantum wells. Science 318, 766–770 (2007). URL https://science.sciencemag.org/content/318/5851/766. https://science.sciencemag.org/content/318/5851/766.full.pdf.
[27] Hsieh, D. et al. A topological dirac insulator in a quantum spin hall phase. Nature 452, 970 EP – (2008). URL https://doi.org/10.1038/nature06843.
[28] Himpsel, F. et al. Stepped silicon surfaces as templates for one-dimensional nanostructures. The Journal of Physical Chemistry B 108, 14484–14490 (2004).
[29] Tegenkamp, C. Vicinal surfaces for functional nanostructures. Journal of Physics: Condensed Matter 21, 013002 (2008).
[30] Wu, H., Grabarnik, S., Emadi, A., de Graaf, G. & Wolffenbuttel, R. F. Characterization of thermal cross-talk in a mems-based thermopile detector array. Journal of Micromechanics and Microengineering 19, 074022 (2009). URL http://stacks.iop.org/0960-1317/19/i=7/a=074022.
[31] Ishizaka, Akitoshi & Shiraki, Y. Low temperature surface cleaning of silicon and its application to silicon mbe. Journal of the Electrochemical Society 133, 666–671 (1986).
[32] Shimada, W., Tochihara, H., Sato, T. & Iwatsuki, M. Transformations of faulted halves of the das structure on quenched Si(111). Surface Science 423, 291–298 (1999). URL http://www.sciencedirect.com/science/article/pii/S0039602899000965.
[33] Yen-Ying, L. 超高真空系統架設與鐵在低溫下成長於金與矽基板之研究. 臺灣師範大學物理學系學位論文1–62 (2009).
[34] Davisson, C. & Germer, L. H. Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705–740 (1927). URL https://link.aps.org/doi/10.1103/PhysRev.30.705.
[35] Nagao, T. et al. Structural phase transitions of si (111)-(√3✕√ 3) r 30°- Au: Phase transitions in domain-wall configurations. Physical Review B 57, 10100 (1998).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code