Responsive image
博碩士論文 etd-0722122-142703 詳細資訊
Title page for etd-0722122-142703
論文名稱
Title
利用數位注入鎖定技術之低中頻都普勒雷達
Low-IF Doppler Radar Using Digital Self-Injection-Locking Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-08-10
繳交日期
Date of Submission
2022-08-22
關鍵字
Keywords
數位式自我注入鎖定雷達、鏡像拒絕、雜波抵銷、靈敏度、線性度、低中頻都卜勒雷達、生理訊號
Digital self-injection-locking radar, image rejection, clutter cancellation, sensitivity, linearity, low-IF Doppler radar, vital sign
統計
Statistics
本論文已被瀏覽 270 次,被下載 0
The thesis/dissertation has been browsed 270 times, has been downloaded 0 times.
中文摘要
  本論文提出一個5.8GHz數位式自我注入鎖定(Digital Self-Injection-Locked, DSIL)低中頻都卜勒雷達,其中DSIL電路能透過比例積分(proportional-integral)控制器調整數位延遲單元(Digital Delay Line, DDL)來補償人體心肺運動造成的都卜勒相移,使注入訊號一直維持在最佳感測點條件,能解決零點問題,並提供雷達系統優越的靈敏度及線性度表現。
  除了DSIL電路外,本雷達還包括一RF升降頻器及一低中頻電路板,其中後者在設計上整合收發端Hartley鏡像拒絕器及雜波(clutter)抵銷器,搭配雜波特徵化算法,透過實驗驗證可以有效消除環境雜波,並且鏡像拒絕比例(Image Rejection Ratio, IRR)高達81.24dB。在相同實驗條件及設置下,與數位低中頻都卜勒雷達相比較,在金屬板振動偵測靈敏度表現上,數位低中頻都卜勒雷達為40μm,而DSIL低中頻都卜勒雷達為20.7μm;在金屬板移動狀態下之振動偵測靈敏度,數位低中頻都卜勒雷達為300μm,而DSIL低中頻都卜勒雷達為100μm,透過實驗證實本論文使用之DSIL技術可以明顯優化靈敏度及線性度,並且應用於人體靜態及移動狀態之生理訊號量測,所得數據均與參考裝置量測值高度吻合。


Abstract
  This study proposes a 5.8 GHz low-IF Doppler radar using digital self-injection-locking (DSIL) technology to achieve high sensitivity and high linearity. In the DSIL circuit of this radar, a proportional-integral (PI) controller is used to adjust the delay of a digital delay line (DDL) to compensate for the Doppler phase shift caused by the human cardiopulmonary motion, so that the injection signal meets the optimum detection point condition and therefore can avoid the null detection point problem.
  In addition to the DSIL circuit, the radar includes an RF up/down converter and a low-IF circuit board that was designed by integrating a Tx/Rx Hartley image rejector and a clutter canceller. With the algorithm of clutter characterization, the radar was verified through experiments to effectively eliminate the environmental clutter and achieve a high image rejection ratio (IRR) of 81.24 dB. Moreover, the measured sensitivities of the oscillation amplitude of a fixed and moving metal plate are 40 versus 20.7 μm and 300 versus 100 μm, respectively, between the conventional digital low-IF radar and the proposed DSIL low-IF radar under the same experimental setup conditions. The results of these and further experiments evidence that the use of DSIL technology can evidently improve the sensitivity and linearity of the low-IF radar and thus increase the applicability of the radar for vital-sign monitoring of a stationary or moving person. The comparison of the vital sign measurements between the proposed radar and the reference device shows strong agreement.
目次 Table of Contents

論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 x
第一章 緒論 1
1-1 研究背景與動機 1
1-2 低中頻都卜勒雷達簡介 2
1-3自我注入鎖定雷達簡介 5
1-4 章節規劃 7
第二章 數位低中頻都卜勒雷達系統研究 8
2-1 關鍵技術 8
2-1-1 Hartley鏡像拒絕器 8
2-1-2 雜波抵銷電路 16
2-1-3 雜波量測及抵銷 18
2-2 數位低中頻都卜勒雷達系統實驗 22
2-2-1 系統架構及實驗設置 22
2-2-2 雜波抵銷結果 27
2-2-3 靈敏度量測 28
2-2-4 線性度量測 29
2-3 結果與討論 33
第三章 基於數位自我注入鎖定技術之 低中頻都卜勒雷達系統研究 34
3-1 數位自我注入鎖定技術 34
3-2 使用DSIL技術之低中頻都卜勒雷達系統實驗 37
3-2-1系統架構及實驗設置 37
3-3-2雜波抵銷結果 42
3-3-3靈敏度量測 43
3-3-4線性度量測 45
3-3-5人體感測結果 46
3-3 結果與討論 50
第四章 結論與未來展望 51
參考文獻 52

參考文獻 References
[1] C. Fulton et al., “Cylindrical polarimetric phased array radar: Beamforming and calibration for weather applications,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2827-2841, May 2017.
[2] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microwave Theory Tech., vol. 60, no. 3, pp. 845-860, Mar. 2012.
[3] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013
[4] Central Weather Bureau. [Online] Available: https://www.cwb.gov.tw/V8/C/W/ OBS_Radar.html
[5] CAACAR. [Online] Available: https://zh.caacar.com/wiki/1319.html
[6] 新通訊元件雜誌 [Online] Available: https://www.2cm.com.tw/2cm/zh-tw/market/1296DC31B2344813A0388B81C706FBC8
[7] 騰訊汽車 [Online] Available: https://auto.qq.com/a/20201009/002245.htm
[8] Guang Ming. [Online] Available: https://guangming.com.my/
[9] 傅宇廷,運用鎖頻迴路追蹤相位之自我注入鎖定生理雷達研究,國立中山大學電機工程學系碩士論文,2021。
[10] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol. 44, no. 6, pp. 428-435, Jun. 1997.
[11] C. Gu et al., “Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3117–3123, Nov. 2012.
[12] B. Razavi, “Architectures and circuits for RF CMOS receivers,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 393-400, May 1998.
[13] I. Mostafanezhad and O. Boric-Lubecke, “Benefits of coherent low-IF for vital signs monitoring using Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2481–2487, Oct. 2014.
[14] H. Kim and J. Jeong, “Non-contact measurement of human respiration and heartbeat using W-band Doppler radar sensor,” Sensors, vol. 20, no. 18, p. 5209, Sep. 2020.
[15] X. Ma, Y. Wang, L. Lu, X. Zhang, Q. Chen, X. You, J. Lin, and L. Li, “Design of a 100-GHz double-sideband low-IF CW Doppler radar transceiver for micrometer mechanical vibration and vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 2876–2890, Jul. 2020.
[16] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[17] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods,” IEEE Sensors J., vol. 19, no. 5, pp. 1905–1916, Mar. 2019.
[18] K.-C. Peng, M.-C. Sung, F.-K. Wang and T.-S. Horng, “A wireless-frequency-locked-loop-based vital sign sensor with quadrature tracking and phase-noise reduction capability,” IEEE Sensors J., vol. 21, no. 8, pp. 9706-9715, Apr. 2021.
[19] M.-C. Tang, C.-Y. Kuo, D.-C. Wun, F.-K. Wang, and T.-S. Horng, “A self- and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol.64, no. 12, pp. 4812–4822, Dec. 2016.
[20] M.-C. Tang, F.-K. Wang, and T.-S. Horng, “Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 5324–5333, Dec. 2017.
[21] R. Hartley, “Modulation System,” U.S. Patent 1,666,206, Apr. 1928.
[22] 鄧雅惠,雙頻帶威福-哈特利鏡像消除接收機與超寬頻 LR-CR 正交相位降頻器,國立交通大學電信工程學系碩士論文,2008。
[23] J. Tu, T. Hwang and J. Lin, “Respiration rate measurement under 1-D body motion using single continuous-wave Doppler radar vital sign detection system,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp. 1937-1946, Jun. 2016.
[24] F. K. Wang, Y. R. Chou, Y. C. Chiu and T. S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931-2940, Dec. 2015.
[25] S.-H. Yu and T.-S. Horng, “Highly linear phase-canceling self-injection-locked ultrasonic radar for non-contact monitoring of respiration and heartbeat,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 1, pp. 75-90, Feb. 2020.
[26] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, no.11, pp. 1723–1727, Nov. 1965.
[27] Vernier. [Online] Available: https://manuals.plus/zh-TW/vernier/godirect-respiration-belt-manual#axzz7aLKFwDoh
[28] Polar. [Online] Available: https://www.polar.com/tw-zh/products/accessories/ H10_heart_rate_sensor
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2032-08-22
校外 Off-campus:開放下載的時間 available 2032-08-22

您的 IP(校外) 位址是 52.14.166.224
現在時間是 2024-11-22
論文校外開放下載的時間是 2032-08-22

Your IP address is 52.14.166.224
The current date is 2024-11-22
This thesis will be available to you on 2032-08-22.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2027-08-22

QR Code