Responsive image
博碩士論文 etd-0722124-171131 詳細資訊
Title page for etd-0722124-171131
論文名稱
Title
鑽孔生物多樣性及其對七股潟湖養殖牡蠣之影響研究
Boring organisms diversity and their effects on cultured oysters in Qigu Lagoon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-08-13
繳交日期
Date of Submission
2024-08-22
關鍵字
Keywords
葡萄牙牡蠣、陵水才女蟲、鑽孔海綿、蠣殼藻屬鑽孔微藻、標準化肥滿度指數、殼密度
Magallana angulata, Polydora lingshuiensis, boring sponges, Ostreobium boring microalgae, standardized condition index, shell density
統計
Statistics
本論文已被瀏覽 70 次,被下載 0
The thesis/dissertation has been browsed 70 times, has been downloaded 0 times.
中文摘要
牡蠣為臺灣重要的養殖貝類,而鑽孔生物(boring organisms)鑽牡蠣殼後,會使殼變得脆弱,牡蠣也需要花費額外的修補能量,此對養殖業的影響研究有限,因此,本論文探討七股潟湖鑽孔生物的物種多樣性並評估其對牡蠣生長指標(肥滿度及殼密度)的影響。結果發現七股潟湖有大型鑽孔生物(>100 μm)多毛類和海綿,以及鑽孔微生物(<100 μm)鑽孔微藻。檢視養殖3、4、7、8、10、11、13、16個月的養殖牡蠣,發現8個月的牡蠣感染鑽孔多毛類的比例最高可達100%、感染鑽孔海綿的比例達10%,其中主要的鑽孔多毛類為陵水才女蟲(Polydora lingshuiensis),鑽孔海綿主要為鑽孔海綿科Clionaidae的物種。大型鑽孔生物鑽殼程度(0, 1, 2)與牡蠣殼密度及標準化肥滿度指數呈負相關,感染鑽孔生物會影響養殖牡蠣的產量及品質。鑽孔微藻是綠藻蠣殼藻屬Ostreobium物種,其對牡蠣殼密度及標準化肥滿度指數無顯著負面影響。隨著養殖時間增加,牡蠣受到鑽孔生物鑽殼的機率會升高,本研究也發現養殖三個月殼長超過3公分以上就有大型鑽孔生物鑽殼,由於七股潟湖鑽孔生物已對牡蠣產業有影響,建議進一步探討鑽孔多毛類族群生物學與環境因子之相關性並發展防治方法及制定有效的管理措施。
Abstract
Oysters are an important aquaculture shellfish in Taiwan. Boring organisms parasitize oyster shells, making them fragile. Oysters expend additional energy to repair the damage, impacting the oyster industry. This study investigated the diversity of species of boring organisms and their effects on oyster growth in Qigu Lagoon. The results showed that boring organisms in Qigu Lagoon included macroborers (>100 μm) of polychaetes and sponges and microborers (<100 μm) of boring microalgae. Oysters were 100% infected by polychaetes and 10% infected by Clionaidae sponges, with a cultural period of eight months. The primary boring polychaete species was Polydora lingshuiensis. The boring degree by macroborers (0, 1, 2) was negatively correlated with shell density and standardized condition index, affecting oyster yield and quality. The impact of boring microalgae Ostreobium on oyster shell density or standardized condition index was nonsignificant. With a more extended cultural period, the likelihood of oysters being parasitized by boring organisms increases. This study revealed that oysters that were larger than 3 cm were infected by macroborers during a cultural period of 3 months. Negative impacts of boring organisms on the oyster industry were observed. It is suggested that further study of the influence of environmental factors on polychaete population biology. Effective prevention and control methods also need to be developed.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 ix
壹、前言 1
1.1臺灣養殖牡蠣簡介 1
1.2鑽孔生物(Boring organisms)簡介 2
1.3鑽孔多毛類簡介 2
1.4鑽孔海綿簡介 3
1.5鑽孔微生物簡介 3
1.6研究動機與目的 4
貳、材料與方法 5
2.1七股潟湖鑽孔生物物種鑑定 5
2.1.1採樣時間與地點 5
2.1.2鑽孔多毛類分子生物鑑定 5
2.1.3鑽孔海綿骨針形態鑑定 7
2.1.4鑽孔微藻形態及分子生物鑑定 7
2.2七股潟湖大型鑽孔生物鑽殼程度調查 9
2.2.1採樣時間與地點 9
2.2.2牡蠣的死亡率調查 9
2.2.3大型鑽孔生物鑽殼程度調查 9
2.2.4統計分析 10
2.3大型鑽孔生物對養殖牡蠣生長的影響 10
2.3.1採樣時間與地點 11
2.3.2牡蠣標準化肥滿度(Standardized condition index)計算 11
2.3.3牡蠣殼密度(Shell density)計算 11
2.3.4大型鑽孔生物鑽殼程度調查 12
2.3.5統計分析 12
2.4鑽孔微藻鑽殼程度調查與其對牡蠣生長的影響 12
2.4.1採樣時間與地點 12
2.4.2、標準化肥滿度、密度與鑽孔微藻鑽殼程度調查 12
2.4.3統計分析 12
2.5七股潟湖養殖牡蠣被鑽孔生物鑽殼之最小殼長調查 13
2.5.1大型鑽孔生物 13
2.5.2鑽孔微藻 13
參、結果 14
3.1七股潟湖鑽孔生物鑑定 14
3.1.1鑽孔多毛類 14
3.1.2鑽孔海綿 14
3.1.3鑽孔微藻 15
3.2七股潟湖大型鑽孔生物鑽殼程度調查 15
3.2.1各樣點死亡率、大型鑽孔生物盛行率與鑽殼程度調查 15
3.2.2樣點、養殖時間與牡蠣死亡率之相關分析 16
3.2.3樣點、養殖時間與鑽殼程度之相關分析 16
3.3樣點、養殖時間與鑽孔生物鑽殼程度對養殖牡蠣生長的影響 16
3.3.2樣點、養殖時間與鑽孔生物鑽殼程度對標準化肥滿度之影響 17
3.3.3樣點、養殖時間與鑽孔生物鑽殼程度對殼密度之影響 17
3.4鑽孔微藻鑽殼程度調查與對牡蠣的生長影響 18
3.4.1樣點D不同養殖時間鑽孔微藻鑽殼程度調查 18
3.4.2鑽孔微藻鑽殼程度對標準化肥滿度、殼密度之影響 18
3.5七股潟湖養殖牡蠣鑽孔生物鑽殼之最小殼長 18
肆、討論 20
4.1七股潟湖牡蠣養殖區的大型鑽孔生物與其對牡蠣生長之影響 20
4.2七股潟湖牡蠣養殖區的微型鑽孔生物與其對牡蠣生長之影響 23
4.3養殖時間與牡蠣死亡率、殼長與鑽孔生物鑽殼程度之關係 24
伍、結論 28
陸、參考文獻 29
參考文獻 References
葉靈通,唐彬,姜敬哲,喻子牛,王江勇 (2014)。才女蟲屬複合體的研究進展。南方水產科學,10(6)。
余正平 (2002)。台灣及其鄰近地區養殖牡蠣(Crassostrea spp.)族群遺傳變異之研究。國立中山大學海洋生物研究所碩士論文。
余廷基 (1977)。牡蠣敵害防治:蚵螺驅除法。水產養殖淺說,69,1-6。
李榮涼 (2003)。台南市沿海養殖牡蠣遭受扁蟲危害原因調查及其因應對策。水試專訓,漁業要聞,004。
李綺芳 (2017)。產地與消費地牡蠣產品化學組成與衛生品質之探討。國立臺灣海洋大學食品科學系碩士論文。
周雅嵐 (2014)。海綿矽質骨針含量及角質海綿吸附之研究。國立中山大學海洋科學系博士論文。
林俊全,鄭宏祺,黃光瀛 (2013)。七股潟湖沙洲地形變遷及保育策略之研究。國家公園學報,23(1),24-35。
海關進出口統計。財政部關務署。https://portal.sw.nat.gov.tw/APGA/GA30
郭仁杰,陳鴻議,何雲達 (1998)。牡蠣養殖之生產經濟分析。水產研究,6,55-70。
陳鴻議 (2001)。牡蠣養殖:雲嘉地區主要魚貝類養殖技術彙集。漁業輔導專刊, 1,125-135。
黃淑敏 (2023)。談WOAH貝類疾病與防治建議。農業部水產試驗所。
楊崇偉 (2023)。台南七股養殖牡蠣受大型鑽孔生物影響研究。國立中山大學海洋科學系碩士論文。
楊清閔 (2023)。臺灣牡蠣養殖產業面臨的困境與問題-彰雲嘉南牡蠣養殖戶訪問調查。水試專訓,083,24-33。
農業部漁業署 (2016-2022)。中華民國臺閩地區漁業統計年報。農業部漁業署。
劉弼仁 (1995)。澎湖青灣珊瑚礁區纔女蟲之分佈及其蟲穴之構造。國立海洋大學海洋生物學系碩士論文。
顏枝麟 (1977)。牡蠣敵害防治:牡蠣害敵-扁蟲的防治法。水產養殖淺說,69,7-10。
顏銘呈 (2014)。牡蠣養殖之碳足跡估算-以七股牡蠣養殖為例。國立成功大學海洋科技與事務研究所碩士論文。
Böök, I. M. (2024). Boring Sponges and Bored Oysters – Interactions between the Bioeroding Sponge Cliona sp. and the New Zealand Flat Oyster Ostrea chilensis. Te Herenga Waka-Victoria University of Wellington . Doctoral dissertation.
Balar, N., Jaiswar, S., & Mantri, V. A. (2021). Effects of extrinsic abiotic factors on induction of gametogenesis and efficacy of a device for the segregation of non-fused gametes and zygotes in the green alga Ulva lactuca. Applied Phycology, 2(1), 1-9.
Barnes, B. B., Luckenbach, M. W., & Kingsley-Smith, P. R. (2010). Oyster reef community interactions: The effect of resident fauna on oyster (Crassostrea spp.) larval recruitment. Journal of Experimental Marine Biology and Ecology, 391(1-2), 169-177.
Barthel, D., Sundet, J., & Barthel, K.-G. (1994). The boring sponge Cliona vastifica in a subarctic population of Chlamys islandica - An example of balanced commensalism? In R. W. M. Van Soest, T. M. G. van Kempen, & J. S. Braekman (Eds.), Sponges in Time and Space. Biology, Chemistry, Paleontology (pp. 289-296). Balkema.
Blake, J., & Kudenov, J. (1978). The Spionidae (Polychaeta) from Southeastern Australia and adjacent areas with a revision of the genera. Memoirs of Museum Victoria, 39, 171–280.
Blake, J. A., & Evans, J. W. (1973). Polydora and related genera (Polychaeta: Spionidae) as borers in mollusk shells and other calcareous substrates. The Veliger, 15, 235-249.
Bornet, M. E., & Flahault, C. (1889). Sur Quelques Plantes Vivant Dans Le Test Calcaire Des Mollusques. Bulletin de la Société Botanique de France, 36(10), CXLVII-CLXXVI.
Boudry, P., Heurtebise, S., Collet, B., Cornette, F., & Gérard, A. (1998). Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. Journal of Experimental Marine Biology and Ecology, 226(2), 279-291.
Bower, S. M. (1992). Diseases and parasites of mussels. Developments in Aquaculture and Fisheries Science, 25, 543-563.
Calvo, G. W., Luckenbach, M., S.K, Jr., & Burreson, E. M. (2001). A comparative field study of Crassostrea ariakensis (Fujita 1913) and Crassostrea virginica (Gmelin 1791) in relation to salinity in Virginia. Journal of Shellfish Research, 20, 221-229.
Cao, C., Huang, S., Ye, L., He, J., Wang, J., & Wang, Y. (2017). Comparison and geographical distribution of Polydora lingshuiensis and P.websteri. South China Fisheries Science, 13(1), 33-42.
Carballo, J. L., Cruz-Barraza, J. A., & GÓMez, P. (2004). Taxonomy and description of clionaid sponges (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico. Zoological Journal of the Linnean Society, 141(3), 353-397.
Carroll, J. M., O'Shaughnessy, K. A., Diedrich, G. A., & Finelli, C. M. (2015). Are oysters being bored to death? Influence of Cliona celata on Crassostrea virginica condition, growth and survival. Diseases of Aquatic Organisms, 117(1), 31-44.
Chambon, C., Legeay, A., Durrieu, G., Ciret, P., & Massabuau, J.-C. (2007). Influence of the parasite worm Polydora sp. on the behaviour of the oyster Crassostrea gigas: A study of the respiratory impact and associated oxidative stress. Marine Biology, 152, 329-338.
Claire, E. C., Isabelle, T., & André, L. M. (2010). Infection of Cultured Eastern Oysters Crassostrea virginica by the Boring Sponge Cliona celata, with Emphasis on Sponge Life History and Mitigation Strategies. Journal of Shellfish Research, 29(4), 905-915.
Clements, J., Bourque, D., McLaughlin, J., Stephenson, M., & Comeau, L. (2017). Siltation increases the susceptibility of surface-cultured eastern oysters (Crassostrea virginica) to parasitism by the mudworm Polydora websteri. Aquaculture Research, 48.
Cockell, C. S., & Herrera, A. (2008). Why are some microorganisms boring? Trends in Microbiology, 16(3), 101-106.
Cole, S. M., Dorgan, K. M., Walton, W., Dzwonkowski, B., & Coogan, J. (2020). Seasonal and spatial patterns of mudblister worm Polydora websteri infestation of farmed oysters in the northern Gulf of Mexico. Aquaculture Environment Interactions, 12, 297-314.
Cox, B., Kosmeyer, P., O’Connor, W., Dove, M., & Johnstone, K. (2012). Oyster over-catch: Cold shock treatment. Australian Seafood Cooperative Research Centre, Bedford Park SA.
Ćurin, Peharda, M., Calcinai, B., & Golubić. (2014). Incidence of damaging endolith infestation of the edible mytilid bivalve Modiolus barbatus. Marine Biology Research, 10.
del Campo, J., Pombert, J.-F., Šlapeta, J., Larkum, A., & Keeling, P. J. (2017). The ‘other’ coral symbiont: Ostreobium diversity and distribution. The International Society for Microbial Ecology Journal, 11(1), 296-299.
Dieudonne, J., & Carroll, J. M. (2021). The Impacts of Boring Sponges on Oyster Health across Multiple Sites and Tidal Heights. Estuaries and Coasts, 45(1), 213-224.
Diez, M. E., Vázquez, N., da Cunha Lana, P., & Cremonte, F. (2016). Biogenic calcareous growth on the ribbed mussel Aulacomya atra (Bivalvia: Mytilidae) favours polydorid boring (Polychaeta: Spionidae). Hydrobiologia, 766(1), 349-355.
Dorgan, K. M. (2015). The biomechanics of burrowing and boring. Journal of Experimental Biology, 218(2), 176-183.
Foighil, D. Ó., Gaffney, P. M., Wilbur, A. E., & Hilbish, T. J. (1998). Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Marine Biology, 131(3), 497-503.
Folmer, O., Black, M., Wr, H., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology, 3, 294-299.
Fork, D., & Larkum, A. (1989). Light harvesting in the green alga Ostreobium sp., a coral symbiont adapted to extreme shade. Marine Biology, 103, 381-385.
Garcia-Pichel, F., Ramírez-Reinat, E., & Gao, Q. (2010). Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proceedings of the National Academy of Sciences of the United States of America, 107, 21749-21754.
Glaub, I., Gektidis, M., Radtke, G., & Vogel, K. (2007). Microborings and Microbial Endoliths. Trace Fossils, 21, 368-381.
Gleason, F. H., Gadd, G. M., Pitt, J. I., & Larkum, A. W. D. (2017). The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology, 8(3), 205-215.
Grant, R. E. (1826). Notice of a new zoophyte (Cliona celata, Gr.) from the Firth of Forth. The Edinburgh new philosophical journal, 1, 78-81.
Gutner-Hoch, E., & Fine, M. (2011). Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs, 30(3), 643-650.
Haigler, S. A. (1969). Boring Mechanism of Polydora websteri Inhabiting Crassostrea virginica. American Zoologist, 9(3), 821-828.
Hancock, A. (1867). XXXVI.—Note on the excavating Sponges; with descriptions of four new species. Annals and Magazine of Natural History, 19(112), 229-242.
Handley, S. J., & Bergquist, P. R. (1997). Spionid polychaete infestations of intertidal pacific oysters Crassostrea gigas (Thunberg), Mahurangi Harbour, northern New Zealand. Aquaculture, 153(3), 191-205.
Hanley, T. C., White, J. W., Stallings, C. D., & Kimbro, D. L. (2019). Environmental gradients shape the combined effects of multiple parasites on oyster hosts in the northern Gulf of Mexico. Marine Ecology Progress Series, 612, 111-125.
Haure, J., Huvet, A., Palvadeau, H., Nourry, M., Penisson, C., Martin, J. L. Y., & Boudry, P. (2003). Feeding and respiratory time activities in the cupped oysters Crassostrea gigas, Crassostrea angulata and their hybrids. Aquaculture, 218(1), 539-551.
Heindel, K., Wisshak, M., & Westphal, H. (2009). Microbioerosion in Tahitian reefs: a record of environmental change during the last deglacial sea‐level rise (IODP 310). Lethaia, 42(3), 322-340.
Hsiao, S.-T., Chuang, S.-C., Chen, K.-S., Ho, P.-H., Wu, C.-L., & Chen, C. A. (2016). DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas. Scientific Reports, 6(1), 34057.
Huvet, A., Lapègue, S., Magoulas, A., & Boudry, P. (2000). Mitochondrial and nuclear DNA phylogeography of Crassostrea angulata, the Portuguese oyster endangered in Europe. Conservation Genetics, 1(3), 251-262.
Kaehler, S. (1999). Incidence and distribution of phototrophic shell-degrading endoliths of the brown mussel Perna perna. Marine Biology, 135(3), 505-514.
Kaehler, S., & McQuaid, C. D. (1999). Lethal and sub-lethal effects of phototrophic endoliths attacking the shell of the intertidal mussel Perna perna. MARINE BIOLOGY, 135(3), 497-503.
Kent, R. M. L. (1979). The influence of heavy infestations of Polydora ciliata on the flesh content of Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom, 59(2), 289-297.
Li, Y.-H., Calcinai, B., Lim, J., & Schönberg, C. H. L. (2023). Bioerosion Research in the South China Sea: Scarce, Patchy and Unrepresentative. Oceans, 4(1), 51-67.
Liu, P.-J., & Hsieh, H.-L. (2000). Burrow Architecture of the Spionid Polychaete Polydora villosa in the Corals Montipora and Porites. Zoological studies, 39.
Lleonart, M., Handlinger, J., & Powell, M. (2003). Spionid mudworm infestation of farmed abalone (Haliotis spp.). Aquaculture, 221(1), 85-96.
Loosanoff, V. L., & Engle, J. B. (1943). Polydora in Oysters Suspended in the Water. Biological Bulletin, 85(1), 69-78.
Mao Che, L., Le Campion-Alsumard, T., Boury-Esnault, N., Payri, C., Golubic, S., & Bézac, C. (1996). Biodegradation of shells of the black pearl oyster, Pinctada margaritifera var. cumingii, by microborers and sponges of French Polynesia. Marine Biology, 126(3), 509-519.
Martinelli, J. C., Casendino, H. R., Spencer, L. H., Alma, L., King, T. L., Padilla-Gamiño, J. L., & Wood, C. L. (2022). Evaluating treatments for shell-boring polychaete (Annelida: Spionidae) infestations of Pacific oysters (Crassostrea gigas) in the US Pacific Northwest. Aquaculture, 561, 738639.
Martinelli, J. C., Considine, M., Casendino, H. R., Tarpey, C. M., Jiménez-Hidalgo, I., Padilla-Gamiño, J. L., King, T. L., Hauser, L., Rumrill, S., & Wood, C. L. (2024). Infestation of cultivated Pacific oysters by shell-boring polychaetes along the US West Coast: Prevalence is associated with season, culture method, and pH. Aquaculture, 580, 740290.
Massé, A., Domart-Coulon, I., Golubic, S., Duché, D., & Tribollet, A. (2018). Early skeletal colonization of the coral holobiont by the microboring Ulvophyceae Ostreobium sp. Scientific Reports, 8(1), 2293.
Massé, A., Tribollet, A., Meziane, T., Bourguet-Kondracki, M.-L., Yepremian, C., Sève, C., Thiney, N., Longeon, A., Couté, A., & Domart-Coulon, I. (2020). Functional diversity of microboring Ostreobium algae isolated from corals. Environmental microbiology, 22.
Molinu, A., Domènech, R., & Martinell, J. (2015). Microendoliths in Lower Pliocene Oysters from the Alt Empordà Basin, NW Mediterranean: Paleoenvironmental Inferences. Ichnos, 22.
Morse, D., Rawson, P. D., & Kraeuter, J. N. (2015). Mud Blister Worms and Oyster Aquaculture. Maine Sea Grant Publications, 46.
Ndhlovu, A., McQuaid, C. D., & Monaco, C. J. (2021). Ectoparasites reduce scope for growth in a rocky-shore mussel (Perna perna) by raising maintenance costs. Science of The Total Environment, 753, 142020.
Ndhlovu, A., McQuaid, C. D., Nicastro, K., Marquet, N., Gektidis, M., Monaco, C. J., & Zardi, G. (2019). Biogeographical Patterns of Endolithic Infestation in an Invasive and an Indigenous Intertidal Marine Ecosystem Engineer. Diversity, 11(5).
Nel, R., Coetzee, P. S., & Van Niekerk, G. (1996). The evaluation of two treatments to reduce mud worm (Polydora hoplura Claparède) infestation in commercially reared oysters (Crassostrea gigas Thunberg). Aquaculture, 141(1), 31-39.
Nell, J. (2007). Controlling mudworm in oysters. NSW-DPI Primefact 590., NSW Department of Primary Industries, NSW, Australia.
Old, M. C. (1941). Taxonomy and distribution of the boring sponges (Clionidae) along the Atlantic coast of North America. Chesapeake Biological Laboratory, 44.
Radashevsky, V., & Hsieh, H.-L. (2000). Polydora (Polychaeta: Spionidae) Species from Taiwan. Zoological studies, 39, 203-217.
Radtke, G., & Golubic, S. (2005). Microborings in mollusk shells, Bay of Safaga, Egypt: Morphometry and ichnology. Facies, 51(1), 118-134.
Read, G. B. (2010). Comparison and history of Polydora websteri and P. haswelli (Polychaeta: Spionidae) as mud-blister worms in New Zealand shellfish. New Zealand Journal of Marine and Freshwater Research, 44(2), 83-100.
Riascos, J. M., Heilmayer, O., Oliva, M. E., Laudien, J., & Arntz, W. E. (2008). Infestation of the surf clam Mesodesma donacium by the spionid polychaete Polydora bioccipitalis. Journal of Sea Research, 59(4), 217-227.
Ricci, F., Rossetto Marcelino, V., Blackall, L. L., Kühl, M., Medina, M., & Verbruggen, H. (2019). Beneath the surface: community assembly and functions of the coral skeleton microbiome. Microbiome, 7(1), 159.
Robert, P. D., David, B. E., & Niels, L. (2014). Oyster-Sponge Interactions and Bioerosion of Reef-Building Substrate Materials: Implications for Oyster Restoration. Journal of Shellfish Research, 33(3), 727-738.
Rosell, D., Uriz, M., & Martin, D. (1999). Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the Blanes littoral zone (north-western Mediterranean Sea). Journal of the Marine Biological Association of the UK, 79, 409-413.
Royer, J., Ropert, M., Mathieu, M., & Costil, K. (2006). Presence of spionid worms and other epibionts in Pacific oysters (Crassostrea gigas) cultured in Normandy, France. Aquaculture, 253, 461-474.
Sato-Okoshi, W., Okoshi, K., Koh, B. S., Kim, Y. H., & Hong, J. S. (2012). Polydorid species (Polychaeta: Spionidae) associated with commercially important mollusk shells in Korean waters. Aquaculture, 350-353, 82-90.
Schlichter, D., Zscharnack, B., & Krisch, H. (1995). Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften, 82(12), 561-564.
Shinn, A., Pratoomyot, J., Bron, J., Paladini, G., Brooker, E., & Brooker, A. (2015). Economic costs of protistan and metazoan parasites to global mariculture. Parasitology, 142, 196-270.
Simon, C. A., & Sato-Okoshi, W. (2015). Polydorid polychaetes on farmed molluscs: distribution, spread and factors contributing to their success. Aquaculture Environment Interactions, 7(2), 147-166.
Souza, J. R. B. d., Bonifacio, P. H. O., & Assis, J. E. d. (2017). Infestation of Crassostrea cf. brasiliana by boring-polychaete polydorids in estuaries from Northeastern Brazil. Journal of Environmental Analysis and Progress, 2(1), 16-22.
Spencer, L. H., Martinelli, J. C., King, T. L., Crim, R., Blake, B., Lopes, H. M., & Wood, C. L. (2021). The risks of shell-boring polychaetes to shellfish aquaculture in Washington, USA: A mini-review to inform mitigation actions. Aquaculture Research, 52(2), 438-455.
Stefaniak, L. M., McAtee, J., & Shulman, M. J. (2005). The costs of being bored: Effects of a clionid sponge on the gastropod Littorina littorea (L). Journal of Experimental Marine Biology and Ecology, 327(1), 103-114.
Surugiu, V. (2012). Systematics and ecology of species of the Polydora-complex (Polychaeta: Spionidae) of the Black Sea. Zootaxa, 3518, 45–65.
Thomas, P. A. (2011). Boring sponges destructive to economically important Molluscan beds and coral reefs in Indian seas. Indian Journal of Fisheries, 26(1 & 2), 163-200.
Tribollet, A. (2008). The boring microflora in modern coral reef ecosystems: A review of its roles. Current Developments in Bioerosion, 67-94.
Tribollet, A., & Golubic, S. (2011). Reef Bioerosion: Agents and Processes. In Z. Dubinsky & N. Stambler (Eds.), Coral Reefs: An Ecosystem in Transition, 435-449. Springer Netherlands.
Tzetlin, A. B., & Britayev, T. A. (1985). A New Species of the Spionidae (Polychaeta) with Asexual Reproduction Associated with Sponges. Zoologica Scripta, 14(3), 177-181.
Verbruggen, H., & Tribollet, A. (2011). Boring algae. Current Biology : CB, 21, R876-877.
Walker, L. (2011). A review of the current status of the Polydora-complex (Polychaeta: Spionidae) in Australia and a checklist of recorded species. Zootaxa, 2751, 40-62.
Wang, H., Qian, L., Liu, X., Zhang, G., & Guo, X. (2010). Classification of a Common Cupped Oyster from Southern China. Journal of Shellfish Research, 29, 857-866.
Warburton, F. E. (1958). The effects of boring sponges on oysters. Fisheries Research Board of Canada Atlantic Program Reports, 68, 3-8.
Waser, A. M., Lackschewitz, D., Knol, J., Reise, K., Wegner, K. M., & Thieltges, D. W. (2020). Spread of the invasive shell-boring annelid Polydora websteri (Polychaeta, Spionidae) into naturalised oyster reefs in the European Wadden Sea. Marine Biodiversity, 50(5), 63.
Watts, J. C., Carroll Jm Fau - Munroe, D. M., Munroe Dm Fau - Finelli, C. M., & Finelli, C. M. (2018). Examination of the potential relationship between boring sponges and pea crabs and their effects on eastern oyster condition. Diseases of Aquatic Organisms, 130(1), 25–36.
Wesche, S. J., Adlard, R. D., & Hooper, J. N. A. (1997). The first incidence of clionid sponges (Porifera) from the Sydney rock oyster Saccostrea commercialis (Iredale and Roughley, 1933). Aquaculture, 157(1), 173-180.
Whitelegge, T. (1890). Report on the worm disease affecting the oysters on the coast of New South Wales. Records of the Australian Museum, 1(2), 41–54.
Williams, L.-G., Karl, S. A., Rice, S., & Simon, C. (2017). Molecular identification of polydorid polychaetes (Annelida: Spionidae): is there a quick way to identify pest and alien species? African Zoology, 52(2), 105-117.
Wisshak, M. (2012). Chapter 8 - Microbioerosion. Developments in Sedimentology, 64, 213-243. Elsevier.
Ye, L., Tang, B., Wu, K., Su, Y., Wang, R., Yu, Z., & Wang, J. (2015). Mudworm Polydora lingshuiensis sp. n is a new species that inhabits both shell burrows and mudtubes. Zootaxa, 3986, 88-100.
Ye, L., Wu, L., Wang, J.-Y., Li, Q.-Z., Guan, J.-L., & Luo, B. (2019). First report of black-heart disease in Kumamoto oyster Crassostrea sikamea spat caused by Polydora lingshuiensis in China. Diseases of Aquatic Organisms, 133, 247-252.
Zeng, Y., & Yang, H. (2020). Review of molluscan bivalve condition index calculations and application in Northern Quahogs Mercenaria mercenaria. Aquaculture Research, 52.
Zhang, H., Wang, N., Zhang, C., Wang, J., Ma, H., Li, S., & Zheng, H. (2024). Pathogenesis of black shell disease and its effects on survival and growth in the noble scallop Chlamys nobilis. Aquaculture, 578, 740044.
Zottoli, R. A., & Carriker, M. R. (1974). Burrow morphology, tube formation, and microarchitecture of shell dissolution by the spionid polychaete Polydora websteri. Marine Biology, 27(4), 307-316.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2029-08-22
校外 Off-campus:開放下載的時間 available 2029-08-22

您的 IP(校外) 位址是 18.224.70.11
現在時間是 2024-11-22
論文校外開放下載的時間是 2029-08-22

Your IP address is 18.224.70.11
The current date is 2024-11-22
This thesis will be available to you on 2029-08-22.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2029-08-22

QR Code