Responsive image
博碩士論文 etd-0723121-122900 詳細資訊
Title page for etd-0723121-122900
論文名稱
Title
以緩釋基質結合固定化菌整治六價鉻污染之地下水
Remediation of hexavalent-chromium polluted groundwater using immobilized bacteria contained low-releasing substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-08-02
繳交日期
Date of Submission
2021-08-23
關鍵字
Keywords
六價鉻、鉻還原菌、固定化、生物整治、緩釋基質、鉻還原基因
hexavalent chromium, chromium reducing bacteria, immobilization, bioremediation, nutrient substrate, chromium reducing gene
統計
Statistics
本論文已被瀏覽 114 次,被下載 0
The thesis/dissertation has been browsed 114 times, has been downloaded 0 times.
中文摘要
自然環境中受六價鉻[hexavalent chromium, Cr(VI)]污染之場址會造成生態及人體健康之危害風險,生物整治為近年來常用的整治技術,其對環境較無害且整治成本較低。本研究探討營養基質添加對微生物生長及Cr(VI)還原效率影響,後續並包覆鉻還原菌製作微生物固定化顆粒,將還原後之三價鉻[trivalent chromium, Cr(III) ]吸附於微生物固定化材料之表面,以減少Cr(III)沉澱於土壤,造成土壤總鉻超標之情形。本研究分為三部分,第一部分Cr(VI)污染濃度為150 mg/L,以利用不同碳源測試微生物利用之情形,顯示以碳基生物復育劑之碳源C-C組別34天還原77.5%之Cr(VI)成效為最佳,且總菌數量於試驗期間最多增長102倍,顯示此碳源有利於微生物生長;第二部分Cr(VI)污染濃度為100 mg/L,以評估兩種不同基質在現地場址相關環境條件下對Cr(VI)還原成效,水溶性基質之碳基生物復育劑S-C組別於56天還原100%之Cr(VI),將水溶性基質之碳基生物復育劑與難溶性基質之長效型釋碳基質混和成的S-CL組別於70天還原53.2%之Cr(VI),試驗過程中S-C及S-CL組別總菌數量最多增長104倍及103倍,三種鉻還原基因yieF、nfsA及chrR基因量於試驗過程中,S-C組別各別最多生長107、107及103倍,S-CL組別最多增長分別為105、104及103倍,NGS分析結果顯示,S-C組別以Trichococcus為優勢菌屬與未添加基質之組別菌屬差異較大,S-CL組別以Enterococcus、Lactobacillus及Clostridium為優勢菌屬與未添加基質之組別差異較小,但無論是使用S-C組別或S-CL組別之基質,皆能促進鉻還原菌生長,以還原Cr(VI);第三部分Cr(VI)污染濃度為100 mg/L,以結合兩種不同微生物固定化材料包覆鉻還原菌與基質試驗中兩種不同基質,測試其對Cr(VI)還原之成效,P組別主要以聚乙烯醇、海藻酸鈉結合粉末活性碳包覆馴養之菌液,試驗初期顆粒形狀完整無破損,但於試驗後期顆粒崩解於水體中,可能原因為包覆菌中Trichococcus可能帶有藻酸鹽裂解酶導致顆粒機械強度變差而崩解,而S組別主要以四乙氧基矽烷(tetraethoxysilane, TEOS)、甲基三甲氧基矽烷(methyltrimethoxysilane, MTMS)結合粉末活性碳包覆馴養之菌液,於試驗初期及後期皆無崩解之情形,M-SC及M-SCL兩組別於試驗100天還原60.6%及52.3%之Cr(VI),顯示微生物經固定化材料包覆後仍可還原Cr(VI),試驗期間M-SC及M-SCL兩組別總菌數量皆最多增長102倍,鉻還原基因yieF、nfsA及chrR基因量於試驗過程中M-SC各別最多增長102、103及104倍,M-SCL各別最多增長102、104及104倍,而固定化菌Cr(VI)還原效率不如懸浮菌液組別,推測原因為還原後之Cr(III)累積於顆粒內或細胞內導致菌活性降低,而影響還原Cr(VI)之成效;基質試驗沉積物及S組別之顆粒透過SEM-EDS觀察還原污染物前後之變化,沉積物表面可觀察到球菌及桿菌存在,且表面含有鉻元素,S組別之顆粒於還原污染物後期顆粒表面出現細小顆粒,且顆粒表面含有鉻元素,透過XRD分析沉積物及S組別之顆粒,顯示沉積物特徵峰有Cr(OH)3結晶態存在,而S組別之顆粒其特徵峰為SiO2,推測由於S組微生物固定化顆粒材料主成分為SiO2,於XRD特徵峰訊號強烈,因此將沉積物中Cr(OH)3之特徵峰覆蓋,經FTIR分析沉積物及S組別之顆粒,顯示其皆含有多種官能基,可於表面吸附還原Cr(VI)成Cr(III),以減少水中Cr(VI)含量及土壤總鉻;本研究以營養基質結合固定化菌之工法,可進一步應用於現地生物整治,以達到還原Cr(VI)及去除土壤總鉻之雙效目的,可提供未來現地整治工法設計整治之參考。
Abstract
Natural environment polluted by hexavalent chromium Cr(VI) will cause ecological and human health risks. Bioremediation is a common remediation technology in recent years, which is harmless to the environment and lower remediation costs. This thesis explores the effected of nutrient substrate addition on chromium reduction bacterial (CRB) growth and Cr(VI) reduction efficiency, and immobilized chromium reducing bacteria to make microbial immobilized particles (MIPs). The MIPs could adsorb the reduced trivalent chromium Cr(III) on the surface of the microbial immobilized material to reduce Cr(III) precipitating in the soil, avoid the total chromium in the soil to exceed the standard. This study is divided into three parts. The first part of thesis, we used different carbon sources to test the substrate utilization of microorganisms. Results shows that the C-C group (carbon based agent for bioremediation enhancement, CABE) has the highest Cr(VI) reduction efficiency (77.5%) in 34 days, and the total number of bacterial was increased of 102 times during the experiment. This result suggest that CABE is benefit to the growth of microorganisms and Cr(VI) bioremediation. In the second part of thesis, we evaluated the effect of Cr(VI) bioreduction efficiency of two different substrates under the relevant environmental conditions. The S-C group reduces 100% of Cr(VI) in 56 days. The S-CL group, which added the mixture substrate of CABE and long-lasting carbon-releasing colloidal substrate (LCS), reduces 53.2% of Cr(VI) in 70 days. During the experiment, the number of total bacteria of S-C and S-CL groups increased by 104 times and 103 times respectively. The chromium reducing genes yieF, nfsA and chrR genes of the S-C group genes increased by 107, 107 and 103 times, while S-CL group genes increased by 105, 104 and 103 times respectively. The next generation sequencing (NGS) analysis showed that under the genus level, Trichococcus was the most dominant CRB and acidogenesis bacteria in S-C group, and Enterococcus, Lactobacillus and Clostridium was the most dominant CRB, acidogenesis bacteria and hydrogen production bacteria in S-CL group. This result suggests that the addition of substrate was benefit to the growth of chromium-reducing bacteria. At last, we used two type of materials to immobilize chromium-reducing bacteria, and tested the Cr(VI) bioreduction. Particles of group P was made with polyvinyl alcohol (PVA) and sodium alginate (SA) combined with powdered activated carbon. Particles of groups S was made with tetraethoxysilane (TEOS), methyltrimethoxysilane (MTMS) combined with powdered activated carbon. The particles of group P disintegrated during the experiment. The possible reason is that Trichococcus may have alginate lyase which causes the mechanical strength of the particles to deteriorate and collapse. The two groups of M-SC and M-SCL reduced 60.6% and 52.3% of Cr(VI) in the test for 100 days, suggest that the CRB could reduce Cr(VI) after immobilization. During the experiment, the number of total bacteria in the M-SC and M-SCL groups increased by 102 times. The chromium reducing genes yieF, nfsA and chrR genes of M-SC increased 102, 103, and 104 times. And chromium reducing genes of M-SCL increased by 102, 104 and 104 times. The Cr(VI) reduction efficiency of immobilized bacteria was lower than the suspension bacteria liquid group. The reason is speculated that Cr(III) accumulated in the particle or cell caused the decreasing of bacterial activity. SEM-EDS was used to analysis sediments and particles surface before and after reducing pollutants. Microorganism could be observed on the surface of the sediment, and chromium was detected by EDS from the surface of sediments. After reducing pollutants, the chromium element was detected from the group S particles surface. The XRD analysis showed that the Cr(OH)3 crystalline state characteristic peak was detected from the sediment, and the characteristic peak of the particles of the S group is SiO2. It is speculated that the component of the MIPs material is SiO2. The background signal of SiO2 covered Cr(OH)3 characteristic peak. FTIR analysis of sediments and particles showed that both samples contained various functional groups, which could adsorb and reduce Cr(VI) to Cr(III) on the surface to reduce the concentration of Cr(VI) in water. This thesis used nutrient substrates combined with immobilized bacterial to simulated the groundwater Cr(VI) bioremediation mechanism. The results achieved the dual effect of reducing Cr(VI) in groundwater and removing total chromium in the soil. It's can provide a reference for the future in-situ bioremediation operation design.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 viii
圖目錄 xii
表目錄 xv
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1鉻污染之危害 3
2.1.1鉻之不同價態之性質 5
2.1.2國內對鉻之現行法規規範 7
2.2土壤與地下水整治技術 8
2.2.1物理及化學整治技術 9
2.2.2生物整治技術 9
2.3生物整治之碳源及基質 10
2.3.1碳基生物復育劑之基質 11
2.3.2長效型釋碳膠體基質 11
2.4環境菌株對六價鉻抗毒性之機制 12
2.5鉻還原菌(chromium reducing bacteria, CRB) 14
2.5.1直接還原 14
2.5.2間接還原 16
2.6微生物固定化 17
2.6.1活性碳 18
2.6.2聚乙烯醇結合海藻酸鈉 19
2.6.3二氧化矽 20
2.7分子生物技術 21
2.7.1聚合酶鏈鎖反應及即時定量聚合酶鏈鎖反應 21
2.7.2次世代定序 22
第三章 實驗方式與設備 23
3.1研究流程 23
3.2試驗材料及設備 25
3.2.1試驗藥品 25
3.2.2實驗設備 27
3.2.3配製污染地下水 28
3.3馴養菌液配方 29
3.4微生物固定化製作 30
3.5實驗設計 31
3.5.1前導試驗 31
3.5.2基質試驗 31
3.5.3微生物固定化試驗 33
3.6試驗分析項目與方法 34
3.6.1水質分析 34
3.6.2皮爾森相關分析 35
3.6.3沉積物成分分析 35
3.7分子生物技術 36
3.7.1 DNA萃取 36
3.7.2基因標準品製作 37
3.7.3即時定量聚合酶連鎖反應 38
3.7.4次世代定序分析 40
第四章 結果與討論 41
4.1前導試驗 41
4.1.1水質分析 41
4.1.2污染物還原情形 44
4.1.3微生物分析 46
4.2基質試驗 47
4.2.1水質分析 47
4.2.2污染物還原情形 50
4.2.3微生物分析 52
4.2.4相關性分析 55
4.2.5次世代定序分析 56
4.3微生物固定化試驗 63
4.3.1水質分析及微生物固定化之情形 63
4.3.2固定化微生物六價鉻還原效率 67
4.3.3微生物分析 69
4.3.4相關性分析 73
4.4沉積物分析 74
4.4.1環境掃描式電子顯微鏡 74
4.4.2 X-射線繞射儀 78
4.4.3傅立葉轉換紅外線光譜 79
第五章 結果與建議 81
5.1結論 81
5.2建議 84
參考文獻 85
附錄 105

參考文獻 References
Abdel-Maksoud, G., Issa, Y.M., Magdy, M.J.M., 2016. Implementation of spectroscopic techniques for characterization of icons of Deir El Sankoria, El Minia, Egypt. 91, 210-220.
Alessandrello, M.J., Vullo, D.L.J.R.A.d.m., 2016. Economical fermentation media for the production of a whole cell catalyst for the treatment of Cr (VI)-containing wastewaters. 48, 245-251.
Alkorta, I., Epelde, L., Garbisu, C.J.F.m.l., 2017. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. 364.
Ameen, F.A., Hamdan, A.M., El-Naggar, M.Y.J.S.r., 2020. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. 10, 1-11.
Ancona, V., Campanale, C., Tumolo, M., De Paola, D., Ardito, C., Volpe, A., Uricchio, V.F.J.I.j.o.e.r., health, p., 2020. Enhancement of chromium (VI) reduction in microcosms amended with lactate or yeast extract: A laboratory-scale Study. 17, 704.
Anupam, K., Dutta, S., Bhattacharjee, C., Datta, S.J.C.E.J., 2011. Adsorptive removal of chromium (VI) from aqueous solution over powdered activated carbon: Optimisation through response surface methodology. 173, 135-143.
Aregay, G.G., Jawad, A., Du, Y., Shahzad, A., Chen, Z.J.J.o.M.L., 2019. Efficient and selective removal of chromium (VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes. 294, 111532.
Baldiris, R., Acosta-Tapia, N., Montes, A., Hernández, J., Vivas-Reyes, R.J.M., 2018. Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas maltophilia. 23, 406.
Bayat, Z., Hassanshahian, M., Cappello, S.J.T.o.m.j., 2015. Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. 9, 48.
Belachew, N., Hinsene, H.J.A.W.S., 2020. Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. 10, 1-8.
Benson, J.J., Sakkos, J.K., Radian, A., Wackett, L.P., Aksan, A.J.J.o.c., science, i., 2018. Enhanced biodegradation of atrazine by bacteria encapsulated in organically modified silica gels. 510, 57-68.
Bilen, M., Mbogning, M.D., Cadoret, F., Dubourg, G., Daoud, Z., Fournier, P.E., Raoult, D.J.N.m., infections, n., 2016. “Pygmaiobacter massiliensis” sp., nov., a new bacterium isolated from the human gut of a pygmy female.
Bouabidi, Z.B., El-Naas, M.H., Zhang, Z.J.E.C.L., 2019. Immobilization of microbial cells for the biotreatment of wastewater: a review. 17, 241-257.
Carrillo-Reyes, J., Celis, L.B., Alatriste-Mondragon, F., Montoya, L., Razo-Flores, E.J.I.j.o.h.e., 2014. Strategies to cope with methanogens in hydrogen producing UASB reactors: Community dynamics. 39, 11423-11432.
Cervantes-Martinez, C.V., Emo, M., García-Celma, M.-J., Stébé, M.-J., Blin, J.-L.J.C.E.R., Design, 2019. Morphosynthesis of porous silica from biocompatible templates. 151, 179-189.
Chai, L., Ding, C., Tang, C., Yang, W., Yang, Z., Wang, Y., Liao, Q., Li, J.J.E., safety, e., 2018. Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB: from genome to gene and protein. 162, 139-146.
Chalansonnet, V., Mercier, C., Orenga, S., Gilbert, C.J.B.m., 2017. Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity. 17, 1-10.
Chen, Y., An, D., Sun, S., Gao, J., Qian, L.J.M., 2018. Reduction and removal of chromium VI in water by powdered activated carbon. 11, 269.
Cho, K.-C., Fuller, M.E., Hatzinger, P.B., Chu, K.-H.J.S.o.t.T.E., 2016. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation. 569, 1098-1106.
Chuaphasuk, C., Prapagdee, B.J.E.S., Research, P., 2019. Effects of biochar-immobilized bacteria on phytoremediation of cadmium-polluted soil. 26, 23679-23688.
Cimino, G., Passerini, A., Toscano, G.J.W.r., 2000. Removal of toxic cations and Cr (VI) from aqueous solution by hazelnut shell. 34, 2955-2962.
Conte, J., Potoczniak, M.J., Tobe, S.S.J.B., 2018. Using synthetic oligonucleotides as standards in probe-based qPCR. 64, 177-179.
Cui, Y., Yang, K.-L., Zhou, K.J.T.i.B., 2020. Using co-culture to functionalize Clostridium fermentation.
Cupples, A.M.J.I.B., Biodegradation, 2013. RDX degrading microbial communities and the prediction of microorganisms responsible for RDX bioremediation. 85, 260-270.
Dai, C., Zhou, Y., Peng, H., Huang, S., Qin, P., Zhang, J., Yang, Y., Luo, L., Zhang, X.J.J.o.i., chemistry, e., 2018. Current progress in remediation of chlorinated volatile organic compounds: A review. 62, 106-119.
de Carvalho, K.G., Gómez, J.E., Vallejo, M., Marguet, E.R., Peroti, N., Donato, M., Itri, R., Colin, V.L.J.E., safety, e., 2019. Production and properties of a bioemulsifier obtained from a lactic acid bacterium. 183, 109553.
Ding, L., Song, J., Huang, D., Lei, J., Li, X., Sun, J.J.J.o.H.M., 2021. Simultaneous removal of nitrate and hexavalent chromium in groundwater using indigenous microorganisms enhanced by emulsified vegetable oil: Interactions and remediation threshold values. 406, 124708.
Du, J., Bao, J., Lu, C., Werner, D.J.W.r., 2016. Reductive sequestration of chromate by hierarchical FeS@ Fe0 particles. 102, 73-81.
Dzionek, A., Wojcieszyńska, D., Guzik, U.J.E.J.o.B., 2016. Natural carriers in bioremediation: A review. 19, 28-36.
Ertani, A., Mietto, A., Borin, M., Nardi, S.J.W., Air,, Pollution, S., 2017. Chromium in agricultural soils and crops: a review. 228, 190.
Fan, L., Lu, Y., Yang, L.-Y., Huang, F., Ouyang, X.-k.J.J.o.c., science, i., 2019. Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core–shell microspheres ((PVA/SA/CNC)@ PEI) for diclofenac sodium adsorption. 554, 48-58.
Farouk, M., Slibi, D.-A., Abd El-Fattah, Z., Atallah, M., El-Sherbiny, M., Hassan, M.A.J.S., 2020. Effect of SiO 2 Addition on Chromium Transitions in Borate Glasses. 1-8.
Feng, P., Ye, Z., Han, H., Ling, Z., Zhou, T., Zhao, S., Virk, A.K., Kakade, A., Abomohra, A.E.-F., El-Dalatony, M.M.J.C.b., 2020. Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. 3, 1-12.
Fernández, P.M., Viñarta, S.C., Bernal, A.R., Cruz, E.L., Figueroa, L.I.J.C., 2018. Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. 208, 139-148.
Franco, L.C., Steinbeisser, S., Zane, G.M., Wall, J.D., Fields, M.W.J.A.m., biotechnology, 2018. Cr (VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris. 102, 2839-2850.
Frost, J., 2019. Introduction to Statistics: An Intuitive Guide for Analyzing Data and.
Gerritsen, J., 2015. The genus Romboutsia: genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract. Wageningen University.
Gerritsen, J., Fuentes, S., Grievink, W., van Niftrik, L., Tindall, B.J., Timmerman, H.M., Rijkers, G.T., Smidt, H.J.I.j.o.s., microbiology, e., 2014. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. 64, 1600-1616.
Gu, R., Gao, J., Dong, L., Liu, Y., Li, X., Bai, Q., Jia, Y., Xiao, H.J.E., Safety, E., 2020. Chromium metabolism characteristics of coexpression of ChrA and ChrT gene. 204, 111060.
Guo, J., Kang, Y., Feng, Y.J.J.o.e.m., 2017. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. 203, 278-285.
Han, H., Zheng, Y., Zhou, T., Liu, P., Li, X.J.E.M., 2021. Cu (II) nonspecifically binding chromate reductase NfoR promotes Cr (VI) reduction. 23, 415-430.
He, H., Hong, F.-F., Tao, X.-X., Huang, G.-H., Leng, Y.-W., Shao, J.-F., Zhao, Y.-d.J.E.E.S., 2016. A study on soil basic characteristics, main microbial flora and typical metal fraction surrounding coal gangue dump in Xiangtan Hunan Province, south of China. 75, 488.
Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M.J.E.C.L., 2020. Methods for preparation and activation of activated carbon: a review. 18, 393-415.
Hora, A., Shetty, V.K.J.D., Treatment, W., 2016. Kinetics of bioreduction of hexavalent chromium by poly vinyl alcohol-alginate immobilized cells of Ochrobactrum sp. Cr-B4 and comparison with free cells. 57, 8981-8989.
Hou, S., Wu, B., Peng, D., Wang, Z., Wang, Y., Xu, H.J.E.p., 2019. Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron. 252, 553-561.
Hu, L., Liu, B., Li, S., Zhong, H., He, Z.J.C., 2021. Study on the oxidative stress and transcriptional level in Cr (VI) and Hg (II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. 269, 128741.
Hu, Y., Chen, N., Liu, T., Feng, C., Ma, L., Chen, S., Li, M.J.J.o.h.m., 2020. The mechanism of nitrate-Cr (VI) reduction mediated by microbial under different initial pHs. 393, 122434.
Huang, H., Tao, X., Jiang, Y., Khan, A., Wu, Q., Yu, X., Wu, D., Chen, Y., Ling, Z., Liu, P.J.S.r., 2017. The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4. 7, 1-11.
Huët, M.A.L., Puchooa, D.J.J.o.A.B., Vol, B., 2017. Bioremediation of heavy metals from aquatic environment through microbial processes: A potential role for probiotics. 5, 14-23.
Ikegami, K., Hirose, Y., Sakashita, H., Maruyama, R., Sugiyama, T.J.C., 2020. Role of polyphenol in sugarcane molasses as a nutrient for hexavalent chromium bioremediation using bacteria. 250, 126267.
Isawi, H.J.A.J.o.C., 2020. Using zeolite/polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. 13, 5691-5716.
Júnior, A.D.N.F., Etchebehere, C., Zaiat, M.J.A., 2015. Mesophilic hydrogen production in acidogenic packed-bed reactors (APBR) using raw sugarcane vinasse as substrate: influence of support materials. 34, 94-105.
Jiang, X., Xiang, N., Zhang, H., Sun, Y., Lin, Z., Hou, L.J.C.p., 2018. Preparation and characterization of poly (vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. 186, 377-383.
Jin, W., Du, H., Zheng, S., Zhang, Y.J.E.A., 2016. Electrochemical processes for the environmental remediation of toxic Cr (VI): A review. 191, 1044-1055.
Jobby, R., Jha, P., Yadav, A.K., Desai, N.J.C., 2018. Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. 207, 255-266.
Kamaci, U.D., Peksel, A.J.C.L., 2021. Enhanced catalytic activity of immobilized phytase into polyvinyl alcohol-sodium alginate based electrospun nanofibers. 151, 821-831.
Kao, C., Chen, S., Wang, J., Chen, Y., Lee, S.J.W.R., 2003. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. 37, 27-38.
Karimi-Maleh, H., Orooji, Y., Ayati, A., Qanbari, S., Tanhaei, B., Karimi, F., Alizadeh, M., Rouhi, J., Fu, L., Sillanpää, M.J.J.o.m.l., 2020. Recent advances in removal techniques of Cr (VI) toxic ion from aqueous solution: a comprehensive review. 115062.
Kaszycki, P., Dubicka-Lisowska, A., Augustynowicz, J., Piwowarczyk, B., Wesołowski, W.J.E.S., Research, P., 2018. Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase. 25, 8928-8942.
Khosravi, R., Moussavi, G., Ghaneian, M.T., Ehrampoush, M.H., Barikbin, B., Ebrahimi, A.A., Sharifzadeh, G.J.J.o.M.L., 2018. Chromium adsorption from aqueous solution using novel green nanocomposite: adsorbent characterization, isotherm, kinetic and thermodynamic investigation. 256, 163-174.
Kobayashi, H., Nakasato, T., Sakamoto, M., Ohtani, Y., Terada, F., Sakai, K., Ohkuma, M., Tohno, M.J.I.j.o.s., microbiology, e., 2017. Clostridium pabulibutyricum sp. nov., a butyric-acid-producing organism isolated from high-moisture grass silage. 67, 4974-4978.
Konovalova, V.V., Dmytrenko, G.M., Nigmatullin, R.R., Bryk, M.T., Gvozdyak, P.I.J.E., Technology, M., 2003. Chromium (VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. 33, 899-907.
Laipan, M., Fu, H., Zhu, R., Rivera, L., Zhu, G., Zhu, J., He, H.J.W., Air,, Pollution, S., 2017. Photochemically induced electron transfer: simultaneously decolorizing dye and reducing Cr (VI). 228, 446.
Lane, D.J.N.a.t.i.b.s., 1991. 16S/23S rRNA sequencing. 115-175.
Lee, T., Cao, W., Tsang, D.C., Sheu, Y., Shia, K., Kao, C.J.S.o.T.T.E., 2019. Emulsified polycolloid substrate biobarrier for benzene and petroleum-hydrocarbon plume containment and migration control–A field-scale study. 666, 839-848.
Li, J.-W., Fang, B., Pang, G.-F., Zhang, M., Ren, F.-Z.J.P.b., physiology, 2019. Age-and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. 159, 68-79.
Li, S., Ren, H., Zhu, J., Bi, Y., Xu, Y., Zhang, L.J.J.o.N.-C.S., 2017. Facile fabrication of superhydrophobic, mechanically strong multifunctional silica-based aerogels at benign temperature. 473, 59-63.
Lin, W.-H., Chen, S.-C., Chien, C.-C., Tsang, D.C., Lo, K.-H., Kao, C.-M.J.E.r., 2020. Application of enhanced bioreduction for hexavalent chromium-polluted groundwater cleanup: Microcosm and microbial diversity studies. 184, 109296.
Ling, L., Li, Z., Yang, C., Feng, S., Zhao, Y., Ma, W., Lu, L.J.b., 2020. Plant endophytic bacteria: a potential resource pool of electroactive microorganisms.
Liu, S., Li, Y., Li, L.J.C.p., 2017. Enhanced stability and mechanical strength of sodium alginate composite films. 160, 62-70.
Liu, X., Wu, G., Zhang, Y., Wu, D., Li, X., Liu, P.J.I.j.o.m.s., 2015. Chromate reductase YieF from Escherichia coli enhances hexavalent chromium resistance of human HepG2 cells. 16, 11892-11902.
Lo, K.-H., Lu, C.-W., Lin, W.-H., Chien, C.-C., Chen, S.-C., Kao, C.-M.J.C., 2020. Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel. 238, 124596.
Long, M., Zhou, C., Xia, S., Guadiea, A.J.C.e.j., 2017. Concomitant Cr (VI) reduction and Cr (III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor. 315, 58-66.
Luo, S., Chen, S., Cao, W., Lin, W., Sheu, Y., Kao, C.J.C., 2019. Application of γ-PGA as the primary carbon source to bioremediate a TCE-polluted aquifer: A pilot-scale study. 237, 124449.
Luo, S., Chien, C., Sheu, Y., Verpoort, F., Chen, S., Kao, C.J.J.o.C.P., 2021. Enhanced bioremediation of trichloroethene-contaminated groundwater using modified γ-PGA for continuous substrate supplement and pH control: Batch and pilot-scale studies. 278, 123736.
Lytras, G., Lytras, C., Argyropoulou, D., Dimopoulos, N., Malavetas, G., Lyberatos, G.J.J.o.h.m., 2017. A novel two-phase bioreactor for microbial hexavalent chromium removal from wastewater. 336, 41-51.
Ma, L., Chen, N., Feng, C., Hu, Y., Li, M., Liu, T.J.B.t., 2019a. Feasibility and mechanism of microbial-phosphorus minerals-alginate immobilized particles in bioreduction of hexavalent chromium and synchronous removal of trivalent chromium. 294, 122213.
Ma, L., Chen, N., Feng, C., Li, M., Gao, Y., Hu, Y.J.C., 2020. Coupling enhancement of Chromium (VI) bioreduction in groundwater by phosphorus minerals. 240, 124896.
Ma, L., Xu, J., Chen, N., Li, M., Feng, C.J.E., safety, e., 2019b. Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. 170, 763-770.
Malaviya, P., Singh, A.J.C.r.i.m., 2016. Bioremediation of chromium solutions and chromium containing wastewaters. 42, 607-633.
Mamais, D., Noutsopoulos, C., Kavallari, I., Nyktari, E., Kaldis, A., Panousi, E., Nikitopoulos, G., Antoniou, K., Nasioka, M.J.C., 2016. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. 152, 238-244.
Meng, H., Liu, P., Sun, H., Cai, Z., Zhou, J., Lin, J., Li, Y.J.S.r., 2016. Engineering ad-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. 6, 1-8.
Mishra, R., Sinha, V., Kannan, A., Upreti, R.K.J.T.i., 2012. Reduction of chromium-VI by chromium resistant lactobacilli: a prospective bacterium for bioremediation. 19, 25.
Mishra, S., Bharagava, R.N.J.J.o.E.S., Health, P.C., 2016. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. 34, 1-32.
Mohamed, M.S., El-Arabi, N.I., El-Hussein, A., El-Maaty, S.A., Abdelhadi, A.A.J.F.m., 2020. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation. 65, 687-696.
Mwinyihija, M., 2010. Main pollutants and environmental impacts of the tanning industry. Ecotoxicological diagnosis in the tanning industry. Springer, pp. 17-35.
Nawi, M., Sabar, S., Nawawi, W.J.J.o.W.P.E., 2018. Preparation of immobilized activated carbon-polyvinyl alcohol composite for the adsorptive removal of 2, 4-dichlorophenoxyacetic acid. 25, 269-277.
Nekouei, F., Nekouei, S., Keshtpour, F., Noorizadeh, H., Wang, S.J.E.S., Research, P., 2017. Cr (OH) 3-NPs-CNC hybrid nanocomposite: a sorbent for adsorptive removal of methylene blue and malachite green from solutions. 24, 25291-25308.
Nithya, K., Sathish, A., Kumar, P.S.J.J.o.W.P.E., 2020. Packed bed column optimization and modeling studies for removal of chromium ions using chemically modified Lantana camara adsorbent. 33, 101069.
Pagnanelli, F., Viggi, C.C., Cibati, A., Uccelletti, D., Toro, L., Palleschi, C.J.J.o.H.M., 2012. Biotreatment of Cr (VI) contaminated waters by sulphate reducing bacteria fed with ethanol. 199, 186-192.
Pattnaik, S., Dash, D., Mohapatra, S., Pattnaik, M., Marandi, A.K., Das, S., Samantaray, D.P.J.C., 2020. Improvement of rice plant productivity by native Cr (VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. 240, 124895.
Paul, M., Pranjaya, P.P., Thatoi, H.J.S.A.S., 2020. In silico studies on structural, functional, and evolutionary analysis of bacterial chromate reductase family responsible for high chromate bioremediation efficiency. 2, 1-21.
Poehlein, A., Höche, N., Mehr, A., Daniel, R.J.G.a., 2017. First Insights into the Genome of the Cr (VI)-Reducing Bacterium Clostridium chromiireducens DSM 23318. 5, e00420-00417.
Pradhan, D., Sukla, L.B., Sawyer, M., Rahman, P.K.J.J.o.I., Chemistry, E., 2017. Recent bioreduction of hexavalent chromium in wastewater treatment: a review. 55, 1-20.
Pushkar, B., Sevak, P., Parab, S., Nilkanth, N.J.J.o.E.M., 2021. Chromium pollution and its bioremediation mechanisms in bacteria: A review. 287, 112279.
Rahman, Z., Thomas, L.J.F.i.M., 2021. Chemical-Assisted Microbially Mediated Chromium (Cr)(VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr (VI) Removal. 11, 3503.
Rainey, F.A.J.B.s.M.o.S.o.A., Bacteria, 2015. Trichococcus. 1-7.
Ramrakhiani, L., Ghosh, S., Sarkar, S., Majumdar, S.J.M.T.P., 2016. Heavy metal biosorption in multi component system on dried activated sludge: investigation of adsorption mechanism by surface characterization. 3, 3538-3552.
Rao, L.N., Rao, M.S., Tirupataiah, C., Aruna, V., Lakshmi, M.N.J.O.C., 2021. Influence of chromium ions on photonic applicability of Na2O-Bi2O3-B2O3-SiO2 glass system. 480, 126496.
Remoundaki, E., Kousi, P., Joulian, C., Battaglia-Brunet, F., Hatzikioseyian, A., Tsezos, M.J.J.o.h.m., 2008. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor. 153, 514-524.
Ren, L., Xu, J., Zhang, Y., Zhou, J., Chen, D., Chang, Z.J.I.j.o.b.m., 2019. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. 135, 898-906.
Rezania, J., Shockravi, A., Vatanpour, V., Ehsani, M.J.P.f.A.T., 2019. Preparation and performance evaluation of carboxylic acid containing polyamide incorporated microporous ultrafiltration PES membranes. 30, 407-416.
Robalds, A., Naja, G.M., Klavins, M.J.J.o.h.m., 2016. Highlighting inconsistencies regarding metal biosorption. 304, 553-556.
Robins, K.J., Hooks, D.O., Rehm, B.H., Ackerley, D.F.J.P.o., 2013. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. 8, e59200.
Rodrigues, D., Rocha-Santos, T.A., Freitas, A.C., Gomes, A.M., Duarte, A.C.J.S.o.t.t.e., 2013. Strategies based on silica monoliths for removing pollutants from wastewater effluents: A review. 461, 126-138.
Saiyari, D.M., Chuang, H.-P., Senoro, D.B., Lin, T.-F., Whang, L.-M., Chiu, Y.-T., Chen, Y.-H.J.S.E.R., 2018. A review in the current developments of genus Dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater. 28, 149-157.
Sakkos, J.K., Mutlu, B.R., Wackett, L.P., Aksan, A.J.A.a.m., interfaces, 2017. Adsorption and biodegradation of aromatic chemicals by bacteria encapsulated in a hydrophobic silica gel. 9, 26848-26858.
Sanjay, M.S., Sudarsanam, D., Raj, G.A., Baskar, K.J.J.o.K.S.U.-S., 2020. Isolation and identification of chromium reducing bacteria from tannery effluent. 32, 265-271.
Sen, K.Y., Hussin, M.H., Baidurah, S.J.B., Biotechnology, A., 2019. Biosynthesis of poly (3-hydroxybutyrate)(PHB) by Cupriavidus necator from various pretreated molasses as carbon source. 17, 51-59.
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C., Rashid, M.I.J.C., 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. 178, 513-533.
Shahpiri, A., Majnoun, Z., Kazemi‐Nasab, A., Zarei, M.J.J.o.C.T., Biotechnology, 2021. Enhancement of chromate bioaccumulation by engineered Escherichia coli cells co‐expressing chromate reductase (YieF) and a rice metallothionein isoform (OsMT1). 96, 1285-1291.
Strepis, N., Naranjo, H.D., Meier-Kolthoff, J., Göker, M., Shapiro, N., Kyrpides, N., Klenk, H.-P., Schaap, P.J., Stams, A.J., Sousa, D.Z.J.B.g., 2020. Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species. 21, 1-13.
Su, M., Fang, Y., Li, B., Yin, W., Gu, J., Liang, H., Li, P., Wu, J.J.S.o.t.t.e., 2019. Enhanced hexavalent chromium removal by activated carbon modified with micro-sized goethite using a facile impregnation method. 647, 47-56.
Sun, M., Wu, T., Zhang, G., Liu, R., Sui, W., Zhang, M., Geng, J., Yin, J., Zhang, M.J.F., Function, 2020a. Lactobacillus rhamnosus LRa05 improves lipid accumulation in mice fed with a high fat diet via regulating the intestinal microbiota, reducing glucose content and promoting liver carbohydrate metabolism. 11, 9514-9525.
Sun, Y., Lan, J., Du, Y., Guo, L., Du, D., Chen, S., Ye, H., Zhang, T.C.J.B.t., 2020b. Chromium (VI) bioreduction and removal by Enterobacter sp. SL grown with waste molasses as carbon source: impact of operational conditions. 302, 121974.
Teng, Z., Shao, W., Zhang, K., Yu, F., Huo, Y., Li, M.J.J.o.h.m., 2020. Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/nanoscale zero valent iron composite. 384, 121505.
Thatoi, H., Das, S., Mishra, J., Rath, B.P., Das, N.J.J.o.E.M., 2014. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. 146, 383-399.
Valenzuela-García, L.I., Zapata, B.L., Ramírez-Ramírez, N., Huchin-Mian, J.P., Robleto, E.A., Ayala-García, V.M., Pedraza-Reyes, M.J.A., microbiology, e., 2020. Novel biochemical properties and physiological role of the flavin mononucleotide oxidoreductase YhdA from Bacillus subtilis. 86, e01688-01620.
Verma, S.K., Sharma, P.C.J.G., 2020. NGS-based characterization of microbial diversity and functional profiling of solid tannery waste metagenomes. 112, 2903-2913.
Wang, D., Zhu, Y.J.J.o.C., 2018. An effective Pt-Cu/SiO2 catalyst for the selective hydrogenation of cinnamaldehyde. 2018.
Wang, F., Dong, W., Zhao, Z., Wang, H., Li, W., Chen, G., Wang, F., Zhao, Y., Huang, J., Zhou, T.J.S.o.T.T.E., 2021. Heavy metal pollution in urban river sediment of different urban functional areas and its influence on microbial community structure. 778, 146383.
Wang, T., Liu, Y., Wang, J., Wang, X., Liu, B., Wang, Y.J.J.o.e.m., 2019a. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. 231, 679-686.
Wang, Y., Chen, S.-y., Yang, X., Wu, Y., Huang, X.-f., He, E.-k., Qiu, R.-l., Wang, S.J.J.o.h.m., 2019b. Enhanced removal of Cr (VI) in the Fe (III)/natural polyphenols system: role of the in situ generated Fe (II). 377, 321-329.
Wang, Y., Peng, C., Padilla-Ortega, E., Robledo-Cabrera, A., López-Valdivieso, A.J.J.o.E.C.E., 2020. Cr (VI) adsorption on activated carbon: mechanisms, modeling and limitations in water treatment. 8, 104031.
Wang, Y., Song, J., Zhai, Y., Zhang, C., Gerritsen, J., Wang, H., Chen, X., Li, Y., Zhao, B., Zhao, B.J.I.j.o.s., microbiology, e., 2015. Romboutsia sedimentorum sp. nov., isolated from an alkaline-saline lake sediment and emended description of the genus Romboutsia. 65, 1193-1198.
Wani, P.A., Olamide, A.N., Rafi, N., Wahid, S., Wasiu, I.A., Sunday, O.O.J.B.J.I., 2016. Sodium Alginate/Polyvinyl Alcohol Immobilization of Brevibacillus brevis OZF6 Isolated from Waste Water and Its Role in the Removal of Toxic Chromate. 1-10.
Wen, C., Sheng, H., Ren, L., Dong, Y., Dong, J.J.P.S., Protection, E., 2017. Study on the removal of hexavalent chromium from contaminated groundwater using emulsified vegetable oil. 109, 599-608.
Wu, G., Jin, K., Liu, L., Zhang, H.J.S.M., 2020. A rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties. 16, 3319-3324.
Wu, G., Xiao, X., Feng, P., Xie, F., Yu, Z., Yuan, W., Liu, P., Li, X.J.S.r., 2017a. Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. 7, 1-12.
Wu, J., Wang, X.-B., Zeng, R.J.J.J.o.h.m., 2017b. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (VI) removal as an example. 333, 275-284.
Xi, Y., Lan, S., Li, X., Wu, Y., Yuan, X., Zhang, C., Yunguo, L., Huang, Y., Quan, B., Wu, S.J.I.B., Biodegradation, 2020. Bioremediation of antimony from wastewater by sulfate-reducing bacteria: Effect of the coexisting ferrous ion. 148, 104912.
Xia, S., Song, Z., Jeyakumar, P., Shaheen, S.M., Rinklebe, J., Ok, Y.S., Bolan, N., Wang, H.J.C.r.i.e.s., technology, 2019. A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater. 49, 1027-1078.
Xia, X., Wu, S., Zhou, Z., Wang, G.J.J.o.H.M., 2020. Microbial Cd (II) and Cr (VI) resistance mechanisms and application in bioremediation. 123685.
Xu, H., Deng, Y.J.I.A., 2017. Dependent evidence combination based on shearman coefficient and pearson coefficient. 6, 11634-11640.
Xu, Q., Jiang, J., Zhu, Z., Xu, T., Sheng, Z.-K., Ye, M., Xu, X., Wang, M.J.I.j.o.a.a., 2019. Efflux pumps AcrAB and OqxAB contribute to nitrofurantoin resistance in an uropathogenic Klebsiella pneumoniae isolate. 54, 223-227.
Yan, J., Ye, W., Jian, Z., Xie, J., Zhong, K., Wang, S., Hu, H., Chen, Z., Wen, H., Zhang, H.J.B.t., 2018. Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles. 266, 447-453.
Yan, X., Song, M., Zhou, M., Ding, C., Wang, Z., Wang, Y., Yang, W., Yang, Z., Liao, Q., Shi, Y.J.S.o.t.t.e., 2019a. Response of Cupriavidus basilensis B-8 to CuO nanoparticles enhances Cr (VI) reduction. 688, 46-55.
Yan, Y., Fu, D., Shi, J.J.W., 2019b. Screening and immobilizing the denitrifying microbes in sediment for bioremediation. 11, 614.
Yang, G., Yin, Y., Wang, J.J.I.J.o.H.E., 2019. Microbial community diversity during fermentative hydrogen production inoculating various pretreated cultures. 44, 13147-13156.
Yang, X., Liu, P., Yao, M., Sun, H., Liu, R., Xie, J., Zhao, Y.J.S.o.T.T.E., 2021. Mechanism and enhancement of Cr (VI) contaminated groundwater remediation by molasses. 780, 146580.
Yasir, M.W., Siddique, M.B.A., Shabbir, Z., Ullah, H., Riaz, L., Nisa, W.-U., Shah, A.A.J.S.o.T.T.E., 2021. Biotreatment potential of co-contaminants hexavalent chromium and polychlorinated biphenyls in industrial wastewater: Individual and simultaneous prospects. 146345.
Yin, X., Tian, J., Zhang, J.J.J.o.t.S.o.F., Agriculture, 2021. Effects of re‐ensiling on the fermentation quality and microbial community of napier grass (Pennisetum purpureum) silage.
Zaybak, Z., Pisciotta, J.M., Tokash, J.C., Logan, B.E.J.J.o.b., 2013. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. 168, 478-485.
Zeng, Z., Tang, B., Xiao, R., Huang, J., Gu, Y., Shi, Y., Hu, Y., Zhou, J., Li, H., Shi, L.J.E., technology, m., 2018. Quorum quenching bacteria encapsulated in PAC-PVA beads for enhanced membrane antifouling properties. 117, 72-78.
Zhang, B., Wang, Z., Shi, J., Dong, H.J.G.e.C.A., 2020. Sulfur-based mixotrophic bio-reduction for efficient removal of chromium (VI) in groundwater. 268, 296-309.
Zheng, X., Yuan, D., Li, Y., Liu, C.J.E.P., 2019. Exploration of the reduction mechanism of Cr (VI) in anaerobic hydrogen fermenter. 254, 113042.
Zhou, L., Liu, J., Dong, F.J.S.A.P.A.M., Spectroscopy, B., 2017. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage. 173, 544-548.
茆云汉, 王建龙, 2013. 聚乙烯醇固定化微生物新方法的研究.
國家環境毒物研究中心, 2014。環境毒物研究中心整理之口服六價鉻性資料。
鄭芸青, 2020。以產氫菌固定化技術提升三氯乙烯生物整治成效。
行政院環境保護署, 2011。土壤污染管制標準。
行政院環境保護署, 2013。地下水污染管制標準。
行政院環境保護署, 2017。飲用水質標準。
行政院環境保護署, 2021。放流水標準。
中華民國勞動部 ,2018。勞工作業場所容許暴露標準 。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2031-08-23
校外 Off-campus:開放下載的時間 available 2031-08-23

您的 IP(校外) 位址是 3.129.218.83
現在時間是 2025-04-28
論文校外開放下載的時間是 2031-08-23

Your IP address is 3.129.218.83
The current date is 2025-04-28
This thesis will be available to you on 2031-08-23.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-08-23

QR Code