Responsive image
博碩士論文 etd-0723121-124932 詳細資訊
Title page for etd-0723121-124932
論文名稱
Title
拓樸絕緣體三碲化二銻奈米薄片所製作的光偵測器之光響應特性探討
The investigation of photoresponse of photodetector based on topological insulator Sb2Te3 nanosheets
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-08-19
繳交日期
Date of Submission
2021-08-23
關鍵字
Keywords
拓樸絕緣體、三碲化二銻、光電導、響應度、光偵測器
topological insulator, Antimony telluride, Photoconductivity, Responsivity, Photodetector
統計
Statistics
本論文已被瀏覽 135 次,被下載 50
The thesis/dissertation has been browsed 135 times, has been downloaded 50 times.
中文摘要
基於拓樸絕緣體製作的光偵測器具有寬頻光電偵測的能力、優秀的載子傳輸性質和普遍的穩定性,這讓拓樸絕緣體適合用來製作高性能光電元件。
本實驗選用以電阻式加熱浮區法成長的拓樸絕緣體三碲化二銻晶體來製作樣品並進行光電導特性的量測。在單獨改變電壓、光強度、電導、環境壓力和入射光的波長等參數的情形下,測量三碲化二銻的光電流及響應度的變化。
實驗結果顯示,三碲化二銻在波長為300 nm到1000 nm的光照射下,響應度幾乎不隨光波長而變化。材料中電子態隨能量的分布狀況將影響其對不同能量的光子的吸收狀況,進而導致響應度隨入射光波長的不同而有所差異。例如二硫化鉬、二硫化錫和硒化鉍等材料,二硫化鉬和二硫化錫中價帶的電子態分布較為不均,導致它們對不同能量的光子吸收狀況差別較大,而硒化鉍中價帶電子態的分布非常均勻,但導帶的電子態分布不均,阻礙了部分電子的躍遷,使電子的躍遷出現差異,這些材料都是因為電子態的分布不均,導致響應度隨波長有明顯變化。三碲化二銻則因為其導帶電子態和價帶電子態的分布都非常均勻,使得電子對不同波長的光能量有著較為一致的吸收。這也造成了三碲化二銻在不同波長的光的照射下有較為一致的響應度。
Abstract
The photodetectors based on topological insulators are capable of broadband light detection, excellent transport properties with high carrier mobility, and prevalent stability. A topological insulator is the best-suited material for making high-performance photodetectors.
The samples made by an antimony telluride crystal was grown by resistance heating floating zone process. The sample's photocurrent had been measured under changing the voltage, light intensity, conductance, environment pressure and the wavelength of light.
The main results are as follows, the response of antimony telluride hardly changes with the wavelength of light which is between 300 nm and 1000 nm. The electronic states in the material affect the absorption of photons with different energies, and lead to a responsivity which changes with the wavelength of light. The electronic states in the valence band of molybdenum disulfide and tin disulfide are non-uniform and lead to a disparity in the absorption of photons with different energies. The bismuth selenide has uniform electronic states in the valence band, but its non-uniform electronic states in the conduction band lead to disparity in an electronic transition. These materials all have the non-uniform electronic states and produce the responsivity which changes significantly with the wavelength of light. The antimony telluride has uniform electronic states in the valence band and the conduction band, it leads to uniform absorption of energy of light and consistent responsivity under the light with different wavelength.
目次 Table of Contents
目錄
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖次 v
表次 vi
第一章 簡介 1
第1節 前言 1
第2節 研究動機 2
第二章 基本理論 3
第1節 拓樸絕緣體(Topological insulator) 3
第2節 光電導效應(Photoconductivity) 5
第3節 量子效率 (Quantum efficiency) 6
第4節 響應時間(Response time) 7
第5節 光電流(Photocurrent)與暗電流(Dark Current) 8
第6節 光增益(Photo-gain)與響應度(Responsivity) 9
第三章 樣品製備及儀器介紹 11
第1節 樣品製備 11
第2節 量測設備介紹 16
第3節 量測系統介紹 20
第四章 實驗結果與討論 21
第1節 電流-電壓特性圖(I-V圖) 21
第2節 光電流-電壓特性圖(I_P-V圖) 23
第3節 光強度對光電流的影響 25
第4節 電導對光響應的影響 28
第5節 大氣壓力對響應度的影響 30
第6節 光波長對響應度的影響 34
結論 39
參考文獻 40
參考文獻 References
參考文獻
[1]Ying-Ying Niu, Biao Wang, Jia-Peng Chen and Dong Wu. “Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe3 flake material at room temperature”. Journal of Materials Chemistry C, 4, 713 (2018)
[2]Der-Hsien Lien, Hsin-Ping Wang, Shih-Bin Chen, Yu-Chieh Chi, Chung-Lun Wu, et al. “360° omnidirectional, printable and transparent photodetectors for flexible optoelectronics”. npj Flexible Electronics, 2, 19 (2018)
[3]Qin-Sheng Wang, Cai-Zhen Li, Shao-Feng Ge, Jin-Guang Li, Wei Lu, et al. “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2”. Nano Letters, 2, 834 (2017)
[4]Wei Feng, Jing-Bin Wu, Xiao-Li Li, Wei Zheng, Xin Zhou, et al. “Ultrahigh Photo-responsivity and Detectivity in Multilayer InSe nanosheets Phototransistors with Broadband Response from Ultraviolet-Visible to Near Infrared Light”. Journal of Materials Chemistry C, 27,7022 (2015)
[5]Sahin Sorifi, Monika Moun, Shuchi Kaushik, and Rajendra Singh. “High temperature performance of GaSe nanosheet based broadband photodetector”. ACS Applied Electronic Materials, 3, 670 (2020)
[6]Chang Liu, Hong-Bin Zhang, Zheng Sun, Ke Ding, Jie Mao, et al. “Topological Insulator Bi2Se3 Nanowire/Si Heterostructure Photodetector with Ultrahigh Responsivity and Broadband Response”. Journal of Materials Chemistry, 24, 5648 (2016)
[7]Zhen-Xing Wang, Muhammad Safdar, Chao Jiang, and Jun He. “High-Performance UV−Visible−NIR Broad Spectral Photodetectors Based on One-Dimensional In2Te3 Nanostructures”. Nano Letters, 9, 4715 (2012)
[8]Qi-Bai Zheng and Ze-Wen Liu. “A broadband photodetector based on Rhodamine B-sensitized ZnO nanowires film”. Scientific Reports, 7,11384 (2017)
[9]Michele Buscema, Dirk Jan Groenendijk, Sofya Blanter, Gary A. Steele, Andres Castellanos-Gomez, et al. “Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors”. Nano Letters, 6, 3347 (2014)
[10]Zhi-Bin Yang, Wen-Jing Jie, Chun-Hin Mak, Sheng-Huang Lin, Hui-Hong Lin, et al. “Wafer-Scale Synthesis of High-Quality Semiconducting Two-Dimensional Layered InSe with Broadband Photoresponse”. ACS Nano, 4, 4225 (2017)
[11]Tian Jiang, Yun-Yi Zang, Hong-Hui Sun, Xin Zheng, Yu Liu, et al. “Broadband High-Responsivity Photodetectors Based on Large-Scale Topological Crystalline Insulator SnTe Ultrathin Film Grown by Molecular Beam Epitaxy”. Advanced Optical Materials, 5, 727 (2017)
[12]Ping-An Hu, Li-Feng Wang, Mina Yoon, Jia Zhang, Wei Feng, et al. “Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates”. Nano Letters, 4, 1649 (2013)
[13]Woong Choi, Mi-Yeon Cho, Aniruddha Konar, Jong-Hak Lee, Gi-Beom Cha, et al. “High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared”. Advanced Materials, 43, 5832 (2012)
[14]Yu-Xuan Lin, Qiong Ma, Pin-Chun Shen, Batyr Ilyas, Ya-Qing Bie, et al. “Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral heterojunctions”. Science Advances, 6, 1493 (2019)
[15]Wen-Jing Zhang, Chih-Piao Chuu, Jing-Kai Huang, Chang-Hsiao Chen, Meng-Lin Tsai, et al. “Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures”. Scientific Reports, 4, 3826 (2015)
[16]Hong-Hui Sun, Tian Jiang, Yun-Yi Zang, Xin Zheng, Yan Gong, et al. “Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures”. Nanoscale, 9, 9325 (2017)
[17]Shiu-Ming Huang, Lin-Jie Lin, You-Jhih Yan, Shih-Hsun Yu, Mitch Chou, et al. “The Extremely Enhanced Photocurrent Response in Topological Insulator Nanosheets with High Conductance”. Nanoscale Research Letters, 13, 371 (2018)
[18]Shiu-Ming Huang, Shih-Jhe Huang, You-Jhih Yan, Shih-Hsun Yu, Mitch Chou, et al. “Extremely high-performance visible light photodetector in the Sb2SeTe2 nanoflake”. Scientific Reports, 7, 45413 (2017)
[19]Lukas Braun, Gregor Mussler, Andrzej Hruban, Marcin Konczykowski, Thomas Schumann, et al. “Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3”. Nature Communications, 7,13259 (2016)
[20]James McIver, David Hsieh, Steven Drapcho, Darius Torchinsky, Nuh Gedik, et al. “Theoretical and experimental study of second harmonic generation from the surface of the topological insulator Bi2Se3”. Physical Review B, 86, 035327 (2012)
[21]Yong-Zhe Zhang, Tao Liu, Bo Meng, Xiao-Hui Li, Guo-Zhen Liang, et al. “Broadband high photoresponse from pure monolayer graphene photodetector”. Nature Communications, 4, 1811 (2013)
[22]Jian-Dong Yao, Zhao-Qiang Zheng, Guo-Wei Yang, et al. “Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition”. Nanoscale, 36, 14974 (2015)
[23]Sidong Lei, Liehui Ge, Sina Najmaei, Antony George, Rajesh Kappera, et al. “Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe”. ACS Nano, 8, 1263 (2014)
[24]Wei Feng, Feng Gao, Yun-Xia Hu, Ming-Jin Dai, Hang Li, et al. “High-performance and flexible photodetectors based on chemical vapor deposition grown two-dimensional In2Se3 nanosheets”. Nanotechnology, 29, 445205 (2018)
[25]Roop K. Mech, Swanand V. Solanke, Neha Mohta, Muralidharan Rangarajan, and Digbijoy N. Nath. “In2Se3 Visible/Near-IR Photodetector With Observation of Band-Edge in Spectral Response”. IEEE Photonics Technology Letters, 31, 905 (2019)
[26]Ming-Sheng Long, An-Yuan Gao, Peng Wang, Hui Xia, Claudia Ott, et al. “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus”. Science Advances, 3, 589 (2017)
[27]Jing Wu, Gavin Kok Wai Koon, Du Xiang, Cheng Han, Chee Tat Toh, et al. “Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus”. ACS Nano, 9, 8070 (2015)
[28]Alkesh B.Patel, Payal Chauhan, Hiren K. Machhi, Som Narayan, Saurabh S.Soni, et al. “Transferrable thin film of ultrasonically exfoliated MoSe2 nanocrystals for efficient visible-light photodetector”. Physica E : Low-dimensional Systems & Nanostructures, 119, 114019 (2020)
[29]Wen-Jing Zhang, Ming-Hui Chiu, Chang-Hsiao Chen, Wei Chen, Lain-Jong Li, et al. “Role of Metal Contacts in High Performance Phototransistors Based on WSe2 Monolayers”. ACS Nano, 8, 8653 (2014)
[30]Pratik Pataniya, Chetan K. Zankat, Mohit Tannarana, C. K. Sumesh, Som Narayan, et al. “Paper-Based Flexible Photodetector Functionalized by WSe2 Nanodots”. ACS Applied Nano Materials, 2, 2758 (2019)
[31]Néstor Perea‐López, Ana Laura Elías, Ayse Berkdemir, Andres Castro‐Beltran, Humberto R. Gutiérrez, et al. “Photosensor Device Based on Few‐Layered WS2 Films”. Advanced functional materials, 23, 5511 (2013)
[32]Oriol Lopez-Sanchez, Dominik Lembke, Metin Kayci, Aleksandra Radenovic and Andras Kis. “Ultrasensitive photodetectors based on monolayer MoS2”. Nature Nanotechnology, 8, 497 (2013)
[33]Xue-Chao Yu, Peng Yu, Di Wu, Bahadur Singh, Qing-Sheng Zeng, et al. “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor”. Nature Communications, 9, 1545 (2018)
[34]You-Rong Tao, Xing-Cai Wu, Wei Wang and Jia-Nan Wang. “Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film”. Journal of Materials Chemistry C, 3, 1347 (2015)
[35]Xing Zhou, Lin Gan, Wen-Ming Tian, Qi Zhang, Sheng-Ye Jin, et al. “Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors”. Advanced materials, 27, 8035 (2015)
[36]Shinpei Ogawa, Masaaki Shimatani, Shoichiro Fukushima, Satoshi Okuda, Yasushi Kanai, et al. “Broadband photoresponse of graphene photodetector from visible to long-wavelength infrared wavelengths”. Optical Engineering, 58, 057106 (2019)
[37]N Unsuree, H Selvi, M G Crabb, J A Alanis, P Parkinson, et al. “Visible and infrared photocurrent enhancement in a graphene-silicon Schottky photodetector through surface-states and electric field engineering”. 2D Materials, 6, 4 (2019)
[38]Yu-Fei Cao, Kai-Ming Cai, Pin-Gan Hu, Li-Xia Zhao, Teng-Fei Yan, et al. “Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors”. Scientific Reports, 5, 8130 (2015)
[39]Fang Liang, Chao-Lun Wang, Chen Luo, Yin Xia, Yang Wang, et al. “Ferromagnetic CoSe broadband photodetector at room temperature”. Nanotechnology, 31, 37 (2020)
[40]Jae-Woong Lee, Do-Young Kim, Sujin Baek, Hyeong-Geun Yu and Franky So. “Inorganic UV–Visible–SWIR Broadband Photodetector Based on Monodisperse PbS Nanocrystals”. Small, 12, 1328 (2016)
[41]Brandon S. Passmore, Jiang Wu, M. O. Manasreh, and G. J. Salamo. “Dual broadband photodetector based on interband and intersubband transitions in InAs quantum dots embedded in graded InGaAs quantum wells”. Applied Physics Letters, 91, 233508 (2007)
[42]Shuo Chen, Khurram Shehzad, Yu-Ting Zhang, Xue Luo, Xue-Mei Liu, et al. “High performance broadband photodetector based on (SnxSb1-x)2Se3 nanorods with enhanced electrical conductivity”. Journal of Materials Chemistry C, 6, 11078 (2018)
[43]Md Rezaul Hasan, Ebuka S. Arinze, Arunima K. Singh, Vladimir P. Oleshko, Shiqi Guo, et al. “An Antimony Selenide Molecular Ink for Flexible Broadband Photodetectors”. Advanced Electronic Materials, 2, 182 (2016)
[44]Zhen-Xing Wang, Muhammad Safdar, Chao Jiang, and Jun He. “High-Performance UV-Visible-NIR Broad Spectral Photodetectors Based on One-Dimensional In2Te3 Nanostructures”. Nano letters, 12, 4715 (2012)
[45]Shan-Cheng Yan, Li-Yan Zhou, Yi Shi, Bo-Jun Wang, Jun-Zhuan Wang, et al. “Solvothermal Synthesis of Indium Telluride Nanowires and Its Photoelectrical Property”. Journal of Nanoscience and Nanotechnology, 15, 3975 (2015)
[46]Jie Yang, Wen-Zhi Yu, Zheng-Hui Pan, Qiang Yu, Qing Yin, et al. “Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity”. Small, 14, 2598 (2018)
[47]Dung-Sheng Tsai, Keng-Ku Liu, Der-Hsien Lien, Meng-Lin Tsai, Chen-Fang Kang, et al. “Few Layer MoS2 with Broadband High Photogain and Fast Optical Switching for Use in Harsh Environments”. ACS Nano, 5, 3905 (2013)
[48]Hong-Bin Zhang, Xiu-Juan Zhang, Chang Liu, Shuit-Tong Lee and Jian-Sheng Jie. “High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi2Se3/Silicon Heterostructure Broadband Photodetectors”. ACS Nano, 5, 5113 (2016)
[49]https://www.topologicalquantumchemistry.org/#/detail/24000
[50]https://www.topologicalquantumchemistry.org/#/detail/43003
[51]https://www.topologicalquantumchemistry.org/#/detail/617072
[52]http://materiae.iphy.ac.cn/materials/MAT00020343
[53]Ji-Chao Yu, Xu Chen, Yi Wang, Hai Zhou, Meng-Ni Xue, et al. “High-performance self-powered broadband photodetector based on CH3NH3PbI3 Perovskite/ZnO nanorod arrays heterostructure”. Journal of Materials Chemistry C, 30, 7302 (2016)
[54]Amreen Ara Hussain, Bikash Sharma, Tapan Barman, and Arup Ratan Pal. “Self-powered Broadband Photodetector using Plasmonic Titanium Nitride”. ACS Applied Materials & Interfaces, 6, 4258 (2016)
[55]Meng-Lin Tsai, Ming-Yang Li, Yu-Meng Shi, Lih-Juann Chen, Lain-Jong Li, et al. “High-efficiency omnidirectional photoresponses based on monolayer lateral p–n heterojunctions”. Nanoscale Horizons, 2, 37 (2017)
[56]Cheng Jia, Xiao-Wen Huang, Di Wu, Yong-Zhi Tian, Jia-Wen Guo, et al. “Ultrasensitive self-driven broadband photodetector based on 2D-WS2/GaAs type-II Zener heterojunction”. Nanoscale, 12, 4435 (2020)
[57]Jian-Dong Yao, Zhao-Qiang Zheng and Guo-Wei Yang. “Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm”. Journal of Materials Chemistry C, 33, 7831 (2016)
[58]Zhi Zheng, Fu-Wei Zhuge, Ya-Guang Wang, Jian-Bing Zhang, Lin Gan, et al. “Decorating Perovskite Quantum Dots in TiO2 Nanotubes Array for Broadband Response Photodetector”. Advanced Functional Materials, 43, 3115 (2017)
[59]Der-Hsien Lien, Zheng-Hong Dong, Jose Ramon Duran Retamal, Hsin-Ping Wang, Tzu-Chiao Wei, et al. “Resonance-Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed”. Advanced Materials, 34, 1972 (2018)
[60]Monika Kataria, Kanchan Yadav, Golam Haider, Yu Ming Liao, Yi-Rou Liou, et al. “Transparent, Wearable, Broadband, and Highly Sensitive Upconversion Nanoparticles and Graphene-Based Hybrid Photodetectors”. ACS Photonics, 6, 2336 (2018)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code