論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
在有機基板實現耦合諧振器帶通濾波器之方法研究 A Study of Coupled-Resonator Bandpass Filters on Organic Substrates |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
102 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2007-07-02 |
繳交日期 Date of Submission |
2007-07-24 |
關鍵字 Keywords |
耦合諧振器、有機基板、帶通濾波器 Coupled-Resonator, Organic substrate, Bandpass Filter |
||
統計 Statistics |
本論文已被瀏覽 5805 次,被下載 2728 次 The thesis/dissertation has been browsed 5805 times, has been downloaded 2728 times. |
中文摘要 |
本論文共分二部份。第一部份對諧振器耦合帶通濾波器設計流程之完整介紹,包括基本合成理論與電磁模擬方法。第二部份利用上述的方法將各種結構帶通濾波器實現於有機基板上,驗証了使用諧振器耦合的方式設計濾波器可以解決元件非理想的寄生效應問題,並能以較高的設計自由度達最佳化的設計。論文中提出了三階直接耦合螺旋狀諧振器的帶通濾波器設計,具有縮小化和較寬頻的旁帶抑制特性。另外也將具有一對傳輸零點之四階交叉耦合濾波器實現於多層基板結構中,比起單層基板結構能達50%的面積縮減。所有設計例在實作與模擬上都有良好的吻合度。 |
Abstract |
This thesis is mainly divided into two parts. The first part discusses in detail design flow of the coupled-resonator bandpass filters, including basic theory of synthesis and the procedure of electromagnetic (EM) simulation. In the second part, by using the above-mentioned design flow, different structure filters have been implemented on organic substrates. The coupled-resonator BPF designs are verified to overcome the elements’ parasitic effects, and thus can be optimized with high degree of freedom. In practice, a 3rd-order bandpass filter by coupling three spiral resonators has been proposed and implemented, having miniature and wide stopband characteristics. Finally, a two-layer 4th-order cross-couple bandpass filter with a pair of transmission zeros has been also proposed and implemented, achieving a significant size reduction of 50% compared with the single-layer design. The simulation and measurement results have good agreement for all design cases in this thesis. |
目次 Table of Contents |
第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 1 1.3 有機基板介紹 2 1.4 章節介紹 4 第二章 濾波器合成方法與損耗分析 6 2.1 簡介 6 2.2 Chebyshev濾波器 6 2.2.1濾波器響應及合成方式 6 2.2.2濾波器損耗分析 8 2.3 準橢圓(quasi-elliptic)濾波器 14 2.3.1 濾波器響應及合成方式 14 2.3.2 準橢圓濾波器特性分析 16 第三章 耦合諧振器濾波器電路原理 19 3.1 帶通濾波器設計參數 19 3.1.1 阻抗或導納轉換器設計參數 19 3.1.2 耦合係數及外部品質因子設計參數 24 3.2 諧振器耦合結構設計方法 27 3.2.1 諧振器耦合基本理論 27 3.2.2 耦合係數萃取方法 34 3.2.3 影響耦合係數之參數 35 3.3 饋入電路設計方法 37 3.3.1 常用之輸出輸入饋入結構 37 3.3.2 外部品質因子萃取方法 38 3.4 二組不同設計參數之特性比較 42 第四章 耦合諧振器濾波器設計與實現 44 4.1 不同合成方式濾波器之設計實現與比較 44 4.1.1 電容性末端耦合傳輸線濾波器 44 4.1.2 諧振器耦合帶通濾波器 56 4.2 直接耦合諧振器帶通濾波器 59 4.2.1 耦合諧振器帶通濾波器設計流程 59 4.2.2 髮夾式諧振器耦合帶通濾波器設計 60 4.2.3 方型開迴路式諧振器耦合帶通濾波器設計 63 4.2.4 螺旋式諧振器耦合帶通濾波器設計 65 4.3 交叉耦合諧振器帶通濾波器 71 4.3.1 準橢圓函數濾波器實現方法 71 4.3.2 單層交叉耦合濾波器設計與實現 72 4.3.3 雙層交叉耦合濾波器設計與實現 78 第五章 結論 84 參考文獻 85 |
參考文獻 References |
[1] 徐世燁,具有多個傳輸零點之微型化LTCC帶通濾波器電路合成設計與實現,國立中山大學電機工程研究所碩士論文,2006。 [2] 馬暉麟,多層基板電感與電容元件模型資料庫之建立,國立中山大學電機工程研究所碩士論文,2004。 [3] 邱基綜,多層有機封裝基板上螺旋電感器之可比例伸縮寬頻模型,國立中山大學電機工程研究所碩士論文,2004。 [4] 林奇樑,有機及軟性基板內埋被動式元件設計與模型化研究,國立中山大學電機工程研究所碩士論文,2005。 [5] Y. S. Lin and C. C. Cheng, “Miniature CPW Parallel-Coupled Bandpass Filter Based on Inductive Loaded Coupled-Lines and Lumped-Element J-Inverters,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 343- 345, May 2007. [6] X. Guan, Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, “Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 110- 112, Mar. 2006. [7] Y. S. Lin, C. H. Wang, C. H. Wu, and C. H. Chen, “Novel compact parallel-coupled microstrip bandpass filters with lumped-element K-inverters,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2324- 2328, July 2005. [8] C. H. Wu, Y. S. Lin, C. H. Wang, and C. H. Chen, “Novel microstrip coupled-line bandpass filters with shortened coupled sections for stopband extension,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 540-546, Feb. 2006. [9] T. N. Kuo, S. C. Lin, C. H. Wang, and C. H. Chen, “Compact Bandpass Filters Based on Dual-Plane Microstrip/Coplanar-Waveguide Structure With Quarter-Wavelength Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 178- 180, Mar. 2007. [10] C. C. Chen, Y. R. Chen, and C. Y. Chang, “Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 120- 131, Jan. 2003. [11] S. C Lin, P. H. Deng, Y. S. Lin, C. H. Wang, and C. H. Chen, “Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1011- 1018, Mar. 2006. [12] C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of Dual- and Triple-Passband Filters Using Alternately Cascaded Multiband Resonators,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 3550- 3558, Sep. 2006. [13] R. W. Rhea, HF Filter Design and Computer Simulation, Tucker, Georgia: Nobel Publishing, 1994, pp. 30-32. [14] S. B. Cohn, “Dissipation loss in multiple-coupled-resonator filters,” in Proc. IRE, vol. 47, pp. 1342-1348, Aug. 1959. [15] G. Zhang, F. Huang, and M.J. Lancaster, “Superconducting spiral filters with quasi-elliptic characteristic for radio astronomy,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 947 - 951, March 2005. [16] G. Zhang, M. J. Lancaster, and F. Huang, “Realization of four transmission zeros in a four-pole superconducting microstrip filter using cross-shaped spiral resonators,” IEEE Trans. Appl. Supercond., vol. 15, pp. 3927- 3931, Mar. 2005. [17] G. A. Lee, M. Megahed, and F. D. Flaviis, “Design of multilayer spiral inductor resonator filter and diplexer for system-in-a-package,” in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 527-530. [18] 田民波,半導體電子元件構裝技術,五南圖書,2005。 [19] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2nd ed., New York: Wiley, 2001. [20] J. S. Hong and M. J. Lancaster, “Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1098- 1107, July 2000. [21] J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099–2109, Nov. 1996. [22] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, And Coupling Structures, Norwood, Massachusetts: Artech House, 1980, pp. 149-155. [23] N. Militaru, M.G. Banciu, and G. Lojewski, “Broadband Planar Filters with Enhanced Couplings Using Defected Ground Structures,” in Proc. IEEE Semiconductor Conf., 2006, pp. 363-366. [24] J. S. Wong, C. Hs. Tseng, R. B. Wu, and T. W. Chen, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory Tech., vol. 27, pp. 44-50, Jan 1979. [25] M. Makimoto and S. Yamashita, Microwave Resonator and Filters for Wireless Communication, Berlin, New York: Springer, 2001. [26] F. Huang, “Quasi-dual-mode microstrip spiral filters using first and second harmonic resonances,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 742-747, Feb. 2006. [27] C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of microstrip bandpass filters with multiorder spurious-mode suppression” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 3788-3793, Dec. 2005. [28] J. T. Kuo and E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1554-1559, May 2003. [29] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a 0° feed structure,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2362-2367, Oct. 2002. [30] P. Mondal and A. Chakrabarty, “Compact Wideband Bandpass Filters With Wide Upper Stopband” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 31-33, Jan. 2007. [31] L. G. Maloratsky, Microwave Filters, Passive RF & Microwave Integrated Circuits, Elsevier, Boston: Newnes, 2004. [32] D. M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998. [33] J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microwave Theory Tech., vol. 53 , pp. 1331-1337, April 2005. [34] J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response,” IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 472-474, Oct. 2004. [35] Y. Mu and Z Ma, D. Xu; “A novel compact interdigital bandpass filter using multilayer cross-coupled folded quarter-wavelength resonators,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 847-849, Dec. 2005. [36] C, F, Chen, T. Y. Huang, C. H. Tseng, R. B. Wu, T. W. Chen, “A miniaturized multilayer quasi-elliptic bandpass filter with aperture-coupled microstrip resonators,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2688-2692, Oct. 2002. [37] A. Djaiz and A. Denidni, “A new compact microstrip two-layer bandpass filter using aperture-coupled SIR-hairpin resonators with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1929-1936, May 2006. [38] J. S. Hong and M. J. Lancaster, “Aperture-coupled microstrip open-loop resonators and their applications to the design of novel microstrip bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1848-1855, Sept. 1999. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |