論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-08-24
校外 Off-campus:開放下載的時間 available 2025-08-24
論文名稱 Title |
以果蠅為模式系統探討三羧酸循環在群體細胞遷移的作用 Using Drosophila as a model to study the role of TCA cycle in group cell movement |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
65 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-08-19 |
繳交日期 Date of Submission |
2020-08-24 |
關鍵字 Keywords |
集體細胞遷移、三羧酸循環、延胡索酸水合酶、代謝、邊境細胞 collective cell migration, citric acid cycle, metabolism, fumarate hydratase, border cell |
||
統計 Statistics |
本論文已被瀏覽 5694 次,被下載 0 次 The thesis/dissertation has been browsed 5694 times, has been downloaded 0 times. |
中文摘要 |
癌細胞的轉移是目前引發癌症病患死亡的主要原因,目前的治療方式主要是手術、化學療法或者是放射線治療為主,但是儘管已經有治療癌症的方法不過轉移目前還是難以被治療。1920 年代 Otto Warburg 發現癌細胞代謝反應與正常細胞截然不同,其中的特徵為葡萄糖的使用量增加並產生乳酸進而促進癌細胞的生長,然而代謝的改變是否會影響癌細胞的轉移還不是特別清楚。因此在果蠅卵巢裡有一群細胞稱為邊境細胞,這群細胞會集體遷移並穿越護士細胞最後在 stage 10 抵達卵母細胞所以可以模擬癌細胞的轉移與侵襲。我們發現在邊境細胞不表現延胡索酸水合酶的情況下會影響邊境細胞和濾泡細胞 (Follicle cell) 遷移。然而延胡索酸水合酶催化活性的改變並不影響邊境細胞遷移,除此之外我們也進一步去影響代謝反應並觀察邊境細胞遷移的情形,結果也發現不影響邊境細胞遷移。根據這些結果表明延胡索酸水合酶影響邊境細胞遷移與催化活性和代謝反應的改變無關。 |
Abstract |
The metastasis of cancer cells is currently the main cause of death of cancer patients. The current treatment methods are mainly surgery, chemotherapy or radiation therapy. However, although there are methods for treating cancer, metastasis is still difficult to be treated. In the 1920s, Otto Warburg discovered that the metabolic response of cancer cells is completely different from that of normal cells, which is characterized by increased use of glucose and production of lactic acid to promote the growth of cancer cells. However, it is not particularly clear whether changes in metabolism affect the metastasis of cancer cells. Therefore, there is a group of cells in the ovary of Drosophila called border cells. This group of cells will collectively migrate and pass through nurse cells and finally reach the oocyte at stage 10, so it can simulate the metastasis and invasion of cancer cells. We found that border cell and Follicle cell migration will be affected when border cells do not express fumarate hydratase. However, changes in the catalytic activity of fumarate hydratase did not affect border cell migration. In addition, we also further affected the metabolic reaction and observed border cell migration, and found that it did not affect border cell migration. According to these results, it is shown that the influence of fumarate hydratase on border cell migration has nothing to do with changes in catalytic activity and metabolic reactions. |
目次 Table of Contents |
論文審定書....................................................................................................................... i 誌謝.................................................................................................................................. ii 中文摘要......................................................................................................................... iii Abstract............................................................................................................................ iv 第一章 緒論.................................................................................................................... 1 1.1 癌症................................................................................................................... 1 1.2 癌症代謝........................................................................................................... 2 1.3 檸檬酸循環....................................................................................................... 3 1.4 延胡索酸水合酶 (fumarate hydratase)............................................................ 5 1.5 邊境細胞遷移模式........................................................................................... 8 第二章 實驗材料與方法.............................................................................................. 10 2.1 Drosophila stocks............................................................................................. 10 2.2 Drosophila ovary dissection and Immunohistochemistry .................................11 2.3 Mosaic clone analysis....................................................................................... 15 第三章 實驗結果.......................................................................................................... 17 3.1 Fumarase 1 表現在邊境細胞.......................................................................... 17 3.2 敲低 Fumarsae 1 不影響邊境細胞遷移....................................................... 17 3.3 缺乏 Fumarase 1 影響邊境細胞遷移........................................................... 18 3.4 邊境細胞遷移不受 Fumarase 1 的催化活性影響........................................ 19 3.5 缺乏 Fumarase 1 影響拉伸濾泡細胞 (Stretched follicle cell) 遷移.......... 19 3.6 延胡索酸的累積不影響邊境細胞遷移......................................................... 19 第四章 討論.................................................................................................................. 21 實驗結果圖.................................................................................................................... 23 Figure 1. 果蠅 Fumarase 1 與人的 Fumarase 胺基酸序列比對...................... 24 Figure 2. Fumarase 1 在邊境細胞中表達以及本研究使用的突變基因座........ 25 Figure 3. GAL4-UAS system 以及敲低 fumarase 1 位置示意圖..................... 26 Figure 4. 利用遺傳雜交方式獲得表現一個 copy 的 fumarase 1G0290 突變及 UAS-fumarase 1 RNAi34797 實驗設計圖................................................................... 27 Figure 5. 表現一個 copy 的 fumarase 1G0290 突變及 UAS-fumarase 1 RNAi34797 對於邊境細胞群體遷移影響不大........................................................................ 28 Figure 6. 利用遺傳雜交方式獲得表現一個 copy 的 fumarase 1G0290 突變及 UAS-fumarase 1 RNAi51779 實驗設計圖................................................................... 29 Figure 7. 表現一個 copy 的 fumarase 1G0290 突變及 UAS-fumarase 1 RNAi 51779 對於邊境細胞遷移影響不大................................................................................ 30 Figure 8. 利用遺傳雜交方式獲得表現一個 copy 的 fumarase 1G0290 突變及 UAS-fumarase 1 RNAi76516 實驗設計圖................................................................... 31 Figure 9. 表現一個 copy 的 fumarase 1G0290 突變及 UAS-fumarase 1 RNAi76516 對於邊境細胞遷移影響不大................................................................................ 32 Figure 10. 利用遺傳雜交方式獲得表現一個 copy 的 fumarase 1G0290 突變及 UAS-fumarase 1 RNAi 51779 和 UAS-fumarase 1 RNAi 34797 實驗設計圖.................. 33 Figure 11. 表現一個 copy 的 fumarase 1G0290 突變及表現兩個 UAS-fumarase 1 RNAi 51779 和 UAS-fumarase 1 RNAi 34797 對於邊境細胞遷移影響不大 ............... 34 Figure 12. 邊境細胞遷移需要 Fumarase 1 並且不受催化活性的影響........... 36 Figure 13. 濾泡細胞遷移需要 Fumarase 1 ......................................................... 37 Figure 14. 降低邊境細胞內的延胡索酸不影響其遷移能力.............................. 39 Figure 15. 缺乏 Fumarase 1 的單顆邊境細胞較鄰近的正常對照組細胞遷移能 力較差.................................................................................................................... 41 參考資料........................................................................................................................ 42 附錄................................................................................................................................ 56 附錄一. Drosophila oogenesis 和邊境細胞遷移示意圖 ..................................... 56 附錄二. Mosaic clone 示意圖............................................................................... 57 |
參考文獻 References |
Adam, J., Yang, M., Bauerschmidt, C., Kitagawa, M., O'Flaherty, L., Maheswaran, P., . . . Pollard, P. J. (2013). A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell Rep, 3(5), 1440-1448. doi:10.1016/j.celrep.2013.04.006 Anderson, N. M., Mucka, P., Kern, J. G., & Feng, H. (2018). The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell, 9(2), 216-237. doi:10.1007/s13238-017-0451-1 Astuti, D., Latif, F., Dallol, A., Dahia, P. L., Douglas, F., George, E., . . . Maher, E. R. (2001). Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet, 69(1), 49-54. doi:10.1086/321282 Bai, J., Uehara, Y., & Montell, D. J. (2000). Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell, 103(7), 1047-1058. doi:10.1016/s0092-8674(00)00208-7 Bardella, C., Pollard, P. J., & Tomlinson, I. (2011). SDH mutations in cancer. Biochim Biophys Acta, 1807(11), 1432-1443. doi:10.1016/j.bbabio.2011.07.003 Barth, J. M., Hafen, E., & Kohler, K. (2012). The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis. BMC Dev Biol, 12, 35. doi:10.1186/1471-213X-12-35 Bayley, J. P., Launonen, V., & Tomlinson, I. P. (2008). The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency. BMC Med Genet, 9, 20. doi:10.1186/1471-2350-9-20 Baysal, B. E. (2007). A recurrent stop-codon mutation in succinate dehydrogenase subunit B gene in normal peripheral blood and childhood T-cell acute leukemia. PLoS One, 2(5), e436. doi:10.1371/journal.pone.0000436 Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., . . . Devlin, B. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287(5454), 848-851. doi:10.1126/science.287.5454.848 Bear, J. E., & Haugh, J. M. (2014). Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr Opin Cell Biol, 30, 74-82. doi:10.1016/j.ceb.2014.06.005 Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Pequignot, E., . . . Rotig, A. (1995). Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet, 11(2), 144-149. doi:10.1038/ng1095-144 Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nat Rev Cancer, 11(2), 85-95. doi:10.1038/nrc2981 Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., . . . Schultz, N. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov, 2(5), 401-404. doi:10.1158/2159-8290.CD-12-0095 Chambers, A. F., & Werb, Z. (2015). Invasion and metastasis--recent advances and future challenges. J Mol Med (Berl), 93(4), 361-368. doi:10.1007/s00109-015-1269-z Chen, J., Call, G. B., Beyer, E., Bui, C., Cespedes, A., Chan, A., . . . Banerjee, U. (2005). Discovery-based science education: functional genomic dissection in Drosophila by undergraduate researchers. PLoS Biol, 3(2), e59. doi:10.1371/journal.pbio.0030059 Dik, E., Naamati, A., Asraf, H., Lehming, N., & Pines, O. (2016). Human Fumarate Hydratase Is Dual Localized by an Alternative Transcription Initiation Mechanism. Traffic, 17(7), 720-732. doi:10.1111/tra.12397 Duchek, P., & Rorth, P. (2001). Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science, 291(5501), 131-133. doi:10.1126/science.291.5501.131 Duchek, P., Somogyi, K., Jekely, G., Beccari, S., & Rorth, P. (2001). Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell, 107(1), 17-26. doi:10.1016/s0092-8674(01)00502-5 Elia, I., Doglioni, G., & Fendt, S. M. (2018). Metabolic Hallmarks of Metastasis Formation. Trends Cell Biol, 28(8), 673-684. doi:10.1016/j.tcb.2018.04.002 Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., . . . Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136(5), E359-386. doi:10.1002/ijc.29210 Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., . . . Kreutz, M. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 109(9), 3812-3819. doi:10.1182/blood-2006-07-035972 Foldi, M., Stickeler, E., Bau, L., Kretz, O., Watermann, D., Gitsch, G., . . . Coy, J. F. (2007). Transketolase protein TKTL1 overexpression: A potential biomarker and therapeutic target in breast cancer. Oncol Rep, 17(4), 841-845. Freed-Pastor, W. A., & Prives, C. (2012). Mutant p53: one name, many proteins. Genes Dev, 26(12), 1268-1286. doi:10.1101/gad.190678.112 Frezza, C. (2017). Mitochondrial metabolites: undercover signalling molecules. Interface Focus, 7(2), 20160100. doi:10.1098/rsfs.2016.0100 Frezza, C., Pollard, P. J., & Gottlieb, E. (2011). Inborn and acquired metabolic defects in cancer. J Mol Med (Berl), 89(3), 213-220. doi:10.1007/s00109-011-0728-4 Friedl, P., & Gilmour, D. (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol, 10(7), 445-457. doi:10.1038/nrm2720 Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 4(11), 891-899. doi:10.1038/nrc1478 Germani, F., Bergantinos, C., & Johnston, L. A. (2018). Mosaic Analysis in Drosophila. Genetics, 208(2), 473-490. doi:10.1534/genetics.117.300256 Gonzalez, H., Robles, I., & Werb, Z. (2018). Innate and acquired immune surveillance in the postdissemination phase of metastasis. FEBS J, 285(4), 654-664. doi:10.1111/febs.14325 Grammont, M., & Irvine, K. D. (2002). Organizer activity of the polar cells during Drosophila oogenesis. Development, 129(22), 5131-5140. Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991). p53 mutations in human cancers. Science, 253(5015), 49-53. doi:10.1126/science.1905840 Horvath, R., Abicht, A., Holinski-Feder, E., Laner, A., Gempel, K., Prokisch, H., . . . Jaksch, M. (2006). Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatry, 77(1), 74-76. doi:10.1136/jnnp.2005.067041 Hosseini, H., Obradovic, M. M. S., Hoffmann, M., Harper, K. L., Sosa, M. S., Werner-Klein, M., . . . Klein, C. A. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540(7634), 552-558. doi:10.1038/nature20785 Hudson, A. M., & Cooley, L. (2014). Methods for studying oogenesis. Methods, 68(1), 207-217. doi:10.1016/j.ymeth.2014.01.005 Imran, A., Qamar, H. Y., Ali, Q., Naeem, H., Riaz, M., Amin, S., . . . Nasir, I. A. (2017). Role of Molecular Biology in Cancer Treatment: A Review Article. Iran J Public Health, 46(11), 1475-1485. Isaacs, J. S., Jung, Y. J., Mole, D. R., Lee, S., Torres-Cabala, C., Chung, Y. L., . . . Neckers, L. (2005). HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell, 8(2), 143-153. doi:10.1016/j.ccr.2005.06.017 Jang, A. C., Chang, Y. C., Bai, J., & Montell, D. (2009). Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat Cell Biol, 11(5), 569-579. doi:10.1038/ncb1863 Jensen, J., Rustad, P. I., Kolnes, A. J., & Lai, Y. C. (2011). The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol, 2, 112. doi:10.3389/fphys.2011.00112 King, R. C. (1970). Ovarian Development in Drosophila melanogaster. Kiuru, M., Lehtonen, R., Eerola, H., Aittomaki, K., Blomqvist, C., Nevanlinna, H., . . . Launonen, V. (2005). No germline FH mutations in familial breast cancer patients. Eur J Hum Genet, 13(4), 506-509. doi:10.1038/sj.ejhg.5201326 Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res, 66(2), 632-637. doi:10.1158/0008-5472.CAN-05-3260 Krebs, H. A., & Johnson, W. A. (1980). The role of citric acid in intermediate metabolism in animal tissues. FEBS Lett, 117 Suppl, K1-10. doi:10.4159/harvard.9780674366701.c143 Kroemer, G., & Pouyssegur, J. (2008). Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell, 13(6), 472-482. doi:10.1016/j.ccr.2008.05.005 Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging Biological Principles of Metastasis. Cell, 168(4), 670-691. doi:10.1016/j.cell.2016.11.037 Langbein, S., Zerilli, M., Zur Hausen, A., Staiger, W., Rensch-Boschert, K., Lukan, N., . . . Coy, J. F. (2006). Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer, 94(4), 578-585. doi:10.1038/sj.bjc.6602962 Levine, A. J., Momand, J., & Finlay, C. A. (1991). The p53 tumour suppressor gene. Nature, 351(6326), 453-456. doi:10.1038/351453a0 Levine, A. J., & Puzio-Kuter, A. M. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330(6009), 1340-1344. doi:10.1126/science.1193494 Linehan, W. M., & Rouault, T. A. (2013). Molecular pathways: Fumarate hydratase-deficient kidney cancer--targeting the Warburg effect in cancer. Clin Cancer Res, 19(13), 3345-3352. doi:10.1158/1078-0432.CCR-13-0304 Losman, J. A., & Kaelin, W. G., Jr. (2013). What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev, 27(8), 836-852. doi:10.1101/gad.217406.113 Lunt, S. Y., & Vander Heiden, M. G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 27, 441-464. doi:10.1146/annurev-cellbio-092910-154237 Marquez, J., Flores, J., Kim, A. H., Nyamaa, B., Nguyen, A. T. T., Park, N., & Han, J. (2019). Rescue of TCA Cycle Dysfunction for Cancer Therapy. J Clin Med, 8(12). doi:10.3390/jcm8122161 Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci, 36(10), 587-597. doi:10.1016/j.tins.2013.07.001 Montell, D. J. (2003). Border-cell migration: the race is on. Nat Rev Mol Cell Biol, 4(1), 13-24. doi:10.1038/nrm1006 Montell, D. J., Rorth, P., & Spradling, A. C. (1992). slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell, 71(1), 51-62. doi:10.1016/0092-8674(92)90265-e Morris, L. G., & Chan, T. A. (2015). Therapeutic targeting of tumor suppressor genes. Cancer, 121(9), 1357-1368. doi:10.1002/cncr.29140 Na, U., Yu, W., Cox, J., Bricker, D. K., Brockmann, K., Rutter, J., . . . Winge, D. R. (2014). The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell Metab, 20(2), 253-266. doi:10.1016/j.cmet.2014.05.014 Neumann, H. P., Pawlu, C., Peczkowska, M., Bausch, B., McWhinney, S. R., Muresan, M., . . . European-American Paraganglioma Study, G. (2004). Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA, 292(8), 943-951. doi:10.1001/jama.292.8.943 Nguyen, P., Leray, V., Diez, M., Serisier, S., Le Bloc'h, J., Siliart, B., & Dumon, H. (2008). Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl), 92(3), 272-283. doi:10.1111/j.1439-0396.2007.00752.x Ni, J. Q., Zhou, R., Czech, B., Liu, L. P., Holderbaum, L., Yang-Zhou, D., . . . Perrimon, N. (2011). [TRiP germline vectors pVALIUM20, pVALIUM21 and pVALIUM22]. Ni, J. Q., Zhou, R., Czech, B., Liu, L. P., Holderbaum, L., Yang-Zhou, D., . . . Perrimon, N. (2011). A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods, 8(5), 405-407. doi:10.1038/nmeth.1592 Ni, Y., Seballos, S., Ganapathi, S., Gurin, D., Fletcher, B., Ngeow, J., . . . Eng, C. (2015). Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer. Endocr Relat Cancer, 22(2), 121-130. doi:10.1530/ERC-14-0537 Niemann, S., & Muller, U. (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet, 26(3), 268-270. doi:10.1038/81551 Parfait, B., Chretien, D., Rotig, A., Marsac, C., Munnich, A., & Rustin, P. (2000). Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet, 106(2), 236-243. doi:10.1007/s004390051033 Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., . . . Kinzler, K. W. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807-1812. doi:10.1126/science.1164382 Pascual, G., Dominguez, D., & Benitah, S. A. (2018). The contributions of cancer cell metabolism to metastasis. Dis Model Mech, 11(8). doi:10.1242/dmm.032920 Petrie, R. J., Doyle, A. D., & Yamada, K. M. (2009). Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol, 10(8), 538-549. doi:10.1038/nrm2729 Picaud, S., Kavanagh, K. L., Yue, W. W., Lee, W. H., Muller-Knapp, S., Gileadi, O., . . . Oppermann, U. (2011). Structural basis of fumarate hydratase deficiency. J Inherit Metab Dis, 34(3), 671-676. doi:10.1007/s10545-011-9294-8 Piruat, J. I., & Millan-Ucles, A. (2014). Genetically modeled mice with mutations in mitochondrial metabolic enzymes for the study of cancer. Front Oncol, 4, 200. doi:10.3389/fonc.2014.00200 Prasad, M., & Montell, D. J. (2007). Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell, 12(6), 997-1005. doi:10.1016/j.devcel.2007.03.021 Prasad, M., Wang, X., He, L., Cai, D., & Montell, D. J. (2015). Border Cell Migration: A Model System for Live Imaging and Genetic Analysis of Collective Cell Movement. Methods Mol Biol, 1328, 89-97. doi:10.1007/978-1-4939-2851-4_6 Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., . . . Horwitz, A. R. (2003). Cell migration: integrating signals from front to back. Science, 302(5651), 1704-1709. doi:10.1126/science.1092053 Rorth, P. (2012). Fellow travellers: emergent properties of collective cell migration. EMBO Rep, 13(11), 984-991. doi:10.1038/embor.2012.149 Rui, L. (2014). Energy metabolism in the liver. Compr Physiol, 4(1), 177-197. doi:10.1002/cphy.c130024 Rustin, P., Bourgeron, T., Parfait, B., Chretien, D., Munnich, A., & Rotig, A. (1997). Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim Biophys Acta, 1361(2), 185-197. doi:10.1016/s0925-4439(97)00035-5 Saha, S. K., Parachoniak, C. A., Ghanta, K. S., Fitamant, J., Ross, K. N., Najem, M. S., . . . Bardeesy, N. (2014). Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature, 513(7516), 110-114. doi:10.1038/nature13441 Sass, E., Blachinsky, E., Karniely, S., & Pines, O. (2001). Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J Biol Chem, 276(49), 46111-46117. doi:10.1074/jbc.M106061200 Sawant, K., Chen, Y., Kotian, N., Preuss, K. M., & McDonald, J. A. (2018). Rap1 GTPase promotes coordinated collective cell migration in vivo. Mol Biol Cell, 29(22), 2656-2673. doi:10.1091/mbc.E17-12-0752 Scarpa, E., & Mayor, R. (2016). Collective cell migration in development. J Cell Biol, 212(2), 143-155. doi:10.1083/jcb.201508047 Schiavi, F., Boedeker, C. C., Bausch, B., Peczkowska, M., Gomez, C. F., Strassburg, T., . . . European-American Paraganglioma Study, G. (2005). Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA, 294(16), 2057-2063. doi:10.1001/jama.294.16.2057 Schmidt, C., Sciacovelli, M., & Frezza, C. (2020). Fumarate hydratase in cancer: A multifaceted tumour suppressor. Semin Cell Dev Biol, 98, 15-25. doi:10.1016/j.semcdb.2019.05.002 Schäfer, U., Jackle, H., He, Y., Bellen, H., Laverty, T., & Rubin, G. (1999). [Goettingen lethals - set 2]. Sciacovelli, M., & Frezza, C. (2016). Oncometabolites: Unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med, 100, 175-181. doi:10.1016/j.freeradbiomed.2016.04.025 Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., . . . Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7(1), 77-85. doi:10.1016/j.ccr.2004.11.022 Sepp, K. J., & Auld, V. J. (1999). Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. Genetics, 151(3), 1093-1101. Şevik, M. (2012). Oncogenic viruses and mechanisms of oncogenesis. Turkish Journal of Veterinary and Animal Sciences, 36. doi:10.3906/vet-1104-2 Seyfried, T. N., & Huysentruyt, L. C. (2013). On the origin of cancer metastasis. Crit Rev Oncog, 18(1-2), 43-73. doi:10.1615/critrevoncog.v18.i1-2.40 Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin, 66(1), 7-30. doi:10.3322/caac.21332 Silver, D. L., & Montell, D. J. (2001). Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell, 107(7), 831-841. doi:10.1016/s0092-8674(01)00607-9 Spradling, A. C., Bate, M., & Arias, A. M. (1993). Developmental genetics of oogenesis. The Development of Drosophila melanogaster, 1-70. Starz-Gaiano, M., Melani, M., Wang, X., Meinhardt, H., & Montell, D. J. (2008). Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev Cell, 14(5), 726-738. doi:10.1016/j.devcel.2008.03.005 Sudarshan, S., Shanmugasundaram, K., Naylor, S. L., Lin, S., Livi, C. B., O'Neill, C. F., . . . Block, K. (2011). Reduced expression of fumarate hydratase in clear cell renal cancer mediates HIF-2alpha accumulation and promotes migration and invasion. PLoS One, 6(6), e21037. doi:10.1371/journal.pone.0021037 Theveneau, E., & Mayor, R. (2012). Cadherins in collective cell migration of mesenchymal cells. Curr Opin Cell Biol, 24(5), 677-684. doi:10.1016/j.ceb.2012.08.002 Timmers, H. J., Kozupa, A., Eisenhofer, G., Raygada, M., Adams, K. T., Solis, D., . . . Pacak, K. (2007). Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol Metab, 92(3), 779-786. doi:10.1210/jc.2006-2315 Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., . . . Multiple Leiomyoma, C. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet, 30(4), 406-410. doi:10.1038/ng849 Tong, W. H., Sourbier, C., Kovtunovych, G., Jeong, S. Y., Vira, M., Ghosh, M., . . . Rouault, T. A. (2011). The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell, 20(3), 315-327. doi:10.1016/j.ccr.2011.07.018 Tong, Y., Liu, Y., Zheng, H., Zheng, L., Liu, W., Wu, J., . . . Lu, L. (2016). Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/beta-catenin signaling. Oncotarget, 7(21), 31413-31428. doi:10.18632/oncotarget.8920 Transgenic, R. P. m. (2017). [Data submitted by the Transgenic RNAi Project to FlyBase for the TRiP-CRISPR Overexpression (TRiP-OE) and TRiP-CRISPR Knockout (TRiP-KO) transgenic construct collections]. Van Coster, R., Seneca, S., Smet, J., Van Hecke, R., Gerlo, E., Devreese, B., . . . Lissens, W. (2003). Homozygous Gly555Glu mutation in the nuclear-encoded 70 kDa flavoprotein gene causes instability of the respiratory chain complex II. Am J Med Genet A, 120A(1), 13-18. doi:10.1002/ajmg.a.10202 Van Vranken, J. G., Bricker, D. K., Dephoure, N., Gygi, S. P., Cox, J. E., Thummel, C. S., & Rutter, J. (2014). SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab, 20(2), 241-252. doi:10.1016/j.cmet.2014.05.012 Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033. doi:10.1126/science.1160809 Vanharanta, S., Buchta, M., McWhinney, S. R., Virta, S. K., Peczkowska, M., Morrison, C. D., . . . Eng, C. (2004). Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet, 74(1), 153-159. doi:10.1086/381054 Vazquez, A., Kamphorst, J. J., Markert, E. K., Schug, Z. T., Tardito, S., & Gottlieb, E. (2016). Cancer metabolism at a glance. J Cell Sci, 129(18), 3367-3373. doi:10.1242/jcs.181016 Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309-314. doi:10.1126/science.123.3191.309 Westcott, J. M., Prechtl, A. M., Maine, E. A., Dang, T. T., Esparza, M. A., Sun, H., . . . Pearson, G. W. (2015). An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest, 125(5), 1927-1943. doi:10.1172/JCI77767 Wu, J. S., & Luo, L. (2006). A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc, 1(6), 2583-2589. doi:10.1038/nprot.2006.320 Xu, T., & Rubin, G. M. (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 117(4), 1223-1237. Yamamoto, S., Jaiswal, M., Sandoval, H., Bayat, V., Zhang, K., Xiong, B., . . . Bellen, H. J. (2013). [X chromosome lethals from the Bellen lab]. Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., . . . Bigner, D. D. (2009). IDH1 and IDH2 mutations in gliomas. N Engl J Med, 360(8), 765-773. doi:10.1056/NEJMoa0808710 Yogev, O., Naamati, A., & Pines, O. (2011). Fumarase: a paradigm of dual targeting and dual localized functions. FEBS J, 278(22), 4230-4242. doi:10.1111/j.1742-4658.2011.08359.x Zaal, E. A., & Berkers, C. R. (2018). The Influence of Metabolism on Drug Response in Cancer. Front Oncol, 8, 500. doi:10.3389/fonc.2018.00500 Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., . . . Xiong, Y. (2009). Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science, 324(5924), 261-265. doi:10.1126/science.1170944 Zhu, H., Lee, O. W., Shah, P., Jadhav, A., Xu, X., Patnaik, S., . . . Hall, M. D. (2020). Identification of Activators of Human Fumarate Hydratase by Quantitative High-Throughput Screening. SLAS Discov, 25(1), 43-56. doi:10.1177/2472555219873559 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-08-24 校外 Off-campus:開放下載的時間 available 2025-08-24 您的 IP(校外) 位址是 216.73.216.204 現在時間是 2025-06-29 論文校外開放下載的時間是 2025-08-24 Your IP address is 216.73.216.204 The current date is 2025-06-29 This thesis will be available to you on 2025-08-24. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-08-24 |
QR Code |