博碩士論文 etd-0725111-113615 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 陳英璟(Ying-Ching Chen) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊工程學系研究所(Computer Science and Engineering)
畢業學位 碩士(Master) 畢業時期 99學年第2學期
論文名稱(中) 結合除霧技術與波長能量補償之水下影像強化演算法
論文名稱(英) Underwater image enhancement: Using Wavelength
Compensation and Image Dehazing (WCID)
檔案
  • etd-0725111-113615.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外均不公開

    論文語文/頁數 中文/87
    統計 本論文已被瀏覽 5586 次,被下載 0 次
    摘要(中) 色散及色偏現象為造成水下攝影失真最主要的兩個原因,其中色散現象為物
    體反射光線經水中粒子吸收與多次漫射所造成,色散現象會對影像產生能見度與
    對比降低的影響;色偏現象則是光線於水中傳播時,因不同波長具相異之能量衰
    減程度,而令水下環境呈現偏藍色調。
    本文針對水下影像之色散與色偏失真提出結合除霧演算法及波長能量補償之
    水下影像強化演算法,首先以Dark Channel Prior 估測物體至相機距離並產生物體
    至相機距離深度圖(Depth Map),接著以影像前景與背景之亮度差值來判斷影像拍
    攝時是否存在人造光源照射。於移除人造光源的影響後,使用除霧演算法移除色
    散造成之霧化效應,再以水下背景光之各波長能量剩餘比率估測拍攝場景之水下
    深度,最後根據各波長能量衰減進行逆向補償,以還原影像之色偏失真。此外超
    解析度影像(Super-Resolution)可呈現較多的影像細節,此為低解析度水下影像處理
    時相當重要且不可或缺的技術之一,本文結合以梯度為基礎的超解析度演算法
    (Gradient-Base)及反投影疊代法(IBP)提出雞尾酒式(Cocktail)超解析度演算法,配合
    雙邊濾波器消除影像邊緣之棋盤效應及震鈴效應以提升影像品質。
    將自 Youtube 網站下載之各種解析度之水下影片分別以WCID、直方圖等化
    及傳統除霧演算法處理,比較後發現WCID 演算法具有同時解決色散與色偏之能
    力且可有效提高影像能見度與色彩保真度,配合超解析度影像的處理可使水下拍
    攝影像及影片均獲得良好視覺效果如呈現於空氣中觀賞之原有色調,清晰度及細
    節保真度。
    摘要(英) Light scattering and color shift are two major sources of distortion for underwater
    photography. Light scattering is caused by light incident on objects reflected and
    deflected multiple times by particles present in the water before reaching the camera.
    This in turn lowers the visibility and contrast of the image captured. Color shift
    corresponds to the varying degrees of attenuation encountered by light traveling in the
    water with different wavelengths, rendering ambient underwater environments
    dominated by bluish tone.
    This paper proposes a novel approach to enhance underwater images by a
    dehazing algorithm with wavelength compensation. Once the depth map, i.e., distances
    between the objects and the camera, is estimated by dark channel prior, the light
    intensities of foreground and background are compared to determine whether an
    artificial light source is employed during image capturing process. After compensating
    the effect of artifical light, the haze phenomenon from light scattering is removed by the
    dehazing algorithm. Next, estimation of the image scene depth according to the residual
    energy ratios of different wavelengths in the background is performed. Based on the
    amount of attenuation corresponding to each light wavelength, color shift compensation
    is conducted to restore color balance. A Super-Rsolution image can offer more details
    that must be important and necessary in low resolution underwater image. In this paper
    combine Gradient-Base Super Resolution and Iterative Back-Projection (IBP) to
    propose Cocktail Super Resolution algorithm, with the bilateral filter to remove the
    chessboard effect and ringing effect along image edges, and improve the image quality.
    The underwater videos with diversified resolution downloaded from the Youtube
    website are processed by employing WCID, histogram equalization, and a traditional
    dehazing algorithm, respectively. Test results demonstrate that videos with significantly
    enhanced visibility and superior color fidelity are obtained by the WCID proposed.
    關鍵字(中)
  • 波長能量補償
  • 影像除霧
  • 水下影像
  • 超解析度
  • 關鍵字(英)
  • Super Resolution
  • Wavelength Compensation
  • Image Dehazing
  • Underwater Image
  • 論文目次 摘要 ......................................................................................................................iv
    Abstract .......................................................................................................................v
    目錄.................................................................................................................... vii
    圖目錄......................................................................................................................ix
    表目錄......................................................................................................................xi
    第一章 簡介...............................................................................................................1
    1.1 影像霧化...................................................................................................... 2
    1.2 色偏現象...................................................................................................... 4
    1.3 超解析度...................................................................................................... 6
    1.4 研究總述...................................................................................................... 7
    第二章 相關研究.......................................................................................................8
    2.1 基於光學物理模型之除霧方法.................................................................. 8
    2.2 影像除霧技術.............................................................................................. 9
    2.3 移除影像色偏現象.................................................................................... 17
    2.4 傳統內插放大法與超解析度演算法........................................................ 18
    第三章 理論基礎.....................................................................................................24
    3.1 Dark Channel Prior..................................................................................... 24
    3.2 Image matting............................................................................................. 27
    3.3 Connected Component Labeling ................................................................ 31
    3.4 Simple Linear Regression........................................................................... 32
    3.5 Jacobi Iterative............................................................................................ 33
    3.6 YCbCr 色彩空間........................................................................................ 35
    3.7 類神經網路(Artificial Neural Network) .................................................... 36
    3.8 雙向濾波器(Bilateral Filter) ...................................................................... 39
    3.9 最小邊緣路徑法(Minimum Error Boundary Cut) .................................... 40
    第四章 研究方法.....................................................................................................41
    4.1 Algorithm ................................................................................................... 42
    4.2 Distance between the camera and the object: d(x) ..................................... 43
    4.3 Laplacian matrix matting using guided filter ............................................. 45
    viii
    4.4 Removal of the artificial light source L...................................................... 48
    4.5 Underwater depth at the top of the photo scene: D .................................... 51
    4.6 Image depth range R................................................................................... 53
    4.7 Super-Resolution ........................................................................................ 54
    第五章 實驗結果.....................................................................................................59
    第六章 結論與未來工作.........................................................................................70
    參考文獻.....................................................................................................................71
    參考文獻 [1]. K. Lebart, C. Smith, E. Trucco, and D. M. Lane, “Automatic indexing of
    underwater survey video: algorithm and benchmarking method,” IEEE J. Ocean.
    Eng., Vol. 28, No. 4, pp. 673 - 686, 2003.
    [2]. J. Ronald Zaneveld and W. Pegau, “Robust underwater visibility parameter,” Opt.
    Express, Vol. 11, pp. 2997-3009, 2003.
    [3]. M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of
    classical waves: microscopy, mesoscopy and diffusion,” Reviews of Modern
    Physics, Vol. 71, No. 1, pp. 313-371, 1999.
    [4]. S. Shwartz, E. Namer, Y. Y. and Schechner, “Blind haze separation,” Proc. of
    IEEE CVPR, Vol. 2, pp. 1984-1991, 2006.
    [5]. J. T. Houghton, “The Physics of Atmospheres,” Chapter 2, 2nd ed. Cambridge
    University Press, 2001.
    [6]. Luz Abril Torres-Méndez and Gregory Dudek, “Color Correction of Underwater
    Images for Aquatic Robot Inspection,” Lecture Notes in Computer Science, No.
    3757, pp. 60-73, 2005.
    [7]. McFarland, W. N, “Light in the sea—correlations with behaviors of fishes and
    invertebrates,” American Scientist Zoology, Vol. 26, pp. 389-401, 1986.
    [8]. Seibert Q. Duntley, “Light in the Sea,” Journal of the Optical Society of America,
    Vol. 53, Issue 2, pp. 214-233, 1963.
    [9]. N. G. Jerlov, “Optical Oceanography,” Elsevier Publishing Company, Amsterdam,
    1968.
    [10]. Conventional Television Systems, ITU-R standard BT470-6, 1970-1998.
    [11]. High Definition TV Analog Video Interface, EIA standard 770.3-A, 2000.
    [12]. B. McGlamery, “A computer model for underwater camera system,” Proc. of
    SPIE, vol. 208, pp. 221–231, 1979.
    [13]. S. Jaffe, “Computer modeling and the design of optimal underwater imaging
    systems,” IEEE J. Ocean. Eng, Vol. 15, no. 2, pp. 101-111, 1990.
    [14]. Y. Y. Schechner and N. Karpel, “Clean Underwater Vision,” Proc. of IEEE
    CVPR, Vol. 1, pp. 536-543, 2004.
    [15]. R. Tan, “Visibility in bad weather from a single image,” Proc. of IEEE CVPR,
    Vol. 1, pp. 1-8, 2008.
    [16]. R. Fattal, “Single Image Dehazing,” Intl. Conf. on Computer Graphics and
    Interactive Technique, No. 72, Pages 1-9, 2008.
    [17]. K. Iqbal, R. Abdul Salam, A. Osman, and A. Zawawi Talib, “Underwater image
    enhancement using an integrated color model,” Intl. Journal of Computer
    Science, Vol. 34, pp. 2-12, 2007.
    [18]. R. G. Keys, “Cubic Convolution Interpolation for Digital Image Processing,”
    IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 6,
    pp. 1153-1160, Dec.1981.
    [19]. H. S. Hou and H. C. Andrews, “Cubic Splines For Image Interpolation and
    Digital Filtering,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol.
    ASSP-26, No. 6, pp. 508-517, Dec. 1978.
    [20]. W. K. Pratt, Digital Image Processing, 2nd Edition, New York: Wiley, 1991.
    [21]. M. Lehmann, Claudia Gonner and Klaus Spitzer, “Addendum: B-spline
    Interpolation in Medical Image Processing,” IEEE Trans. on Medical Image,
    vol. 20, pp. 660-665, July 2001.
    [22] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd Edition,
    Prentice-Hall, Upper Saddle River, New Jersey, U.S.A., 2002.
    [23]. W.T. Freeman and E.C. Pasztor, “Learning to estimate scenes from images,”
    Advances in Neural Information Processing Systems, vol. 11, pp.775-781, Nov.
    1999.
    [24]. J. Yang, J. Wright, T. Huang, and Y. Ma, “Image Super-Resolution Via Sparse
    Representation,” IEEE Transactions on Signal Processing, Vol. 19, No. 11, pp.
    2861-2873, 2010.
    [25]. Xiaoguang Li, Kin Man Lam, Guoping Qiu, Lansun Shen and Suyu Wang,
    “Example-based image super-resolution with class-specific predictors,” Journal of
    Visual Communication and Image Representation, vol. 20, pp. 312-322,2009.
    [26] W.T. Freeman and E.C. Pasztor, “Markov networks for super-resolution,” Proc. of
    the 34th Conference on Information Sciences and Systems, Princeton, New Jersey,
    U.S.A, Mar. 2000.
    [27]. R. Y. Tsai and T. S. Huang, “Multiframe Image Restoration and Registration,”
    Advances in Computer Vision and Image Processing(R. Y. Tsai, T. S. Huang, Eds.),
    vol. 1, pp. 317-339, JAI Press, London, 1984.
    [28]. M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP:
    Graphical Models and Image Processing, vol. 53, no. 3, pp. 231–239, May 1991.
    [29]. S. Farsiu, D. Robinson, M. Elad and P. Milanfar, “Fast and Robust Multi-Frame
    Super-Resolution,” IEEE Trans. on Image Processing, Vol. 13, No. 10,
    pp.1327-1344, 2004.
    [30]. C. Papathanassiou, M. Petrou, “Super resolution: an overview”, Proc. of
    IGARSS’05, Vol. 8, pp.5655 -5658, July 2005
    [31]. C. C. Hsieh, Y. P. Huang, Y. Y. chen and C. S. Fuh, “Video Super-Resolution
    by Motion Compensated Iterative Back-Projection Approach”, Journal of
    Information Science and Engineering, Vol. 27 No. 3, pp. 1107-1122, 2011.
    [32]. 劉國慶,『利用磁振造影的血流灌注影像分割技術來評估腦部疾病』,國
    立陽明大學放射醫學科學研究所碩士論文(2002)。
    [33]. W. T. Freeman, T. R. Johes and E. C. Pasztor, “Example-Based Super
    Resolution,” IEEE Computer Graphics and Application, Vol. 22, NO. 2,
    pp.56-65, 2002.
    [34]. R. Kutka, “Reconstruction of Correct 3-D Perception on Screens Views at
    Different Distances,” IEEE Transactions on Communications, Vol. 42, No. 1,
    pp. 29-33, 1994.
    [35]. Kaiming He, Jian Sun and Xiaoou Tang, “Single image haze removal using
    Dark Channel Prior,” Proc. of IEEE CVPR, Vol. 1, pp. 1956-1963, 2009.
    [36]. A. Berman, P. Vlahos, and A. Dadourian, “Comprehensive Method for
    Removing from an Image the Background Surrounding a Selected Object,” U.S.
    Patent 6134345, 2000.
    [37]. Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson matting.
    ACM Transactions on Graphics, Vol. 23 No. 3, pp. 315-321, 2004
    [38]. A. Levin, D. Lischinski, and Y. Weiss, “A closed form solution to natural image
    matting,” Proc. of IEEE CVPR, Vol. 1, pp. 61-68, 2006.
    [39]. 鍾國亮,『影像處理與電腦視覺』,東華書局2002,ISBN: 9574831418。
    [40]. 管中閔,『統計學:觀念與方法』,華泰文化出版社2005,ISBN: 9576095328。
    [41]. Howard Anton, Elementary Linear Algebra 9nd edition, 2006. (wliey ISBN:
    047166960)
    [42]. Charles Poynton, Digital Video and HDTV: Algorithms and Interfaces 1st
    edition, 2003. (Morgan Kaufmann ISBN: 1558607927)
    [43]. 維基百科: http://zh.wikipedia.org/zh-tw/.
    [44]. 王進德,『類神經網路與模糊控制理論控制入門』,全華科技圖書股份有限公司 2007,ISBN: 9572155946。
    [45]. 葉怡成,『類神經網路模式與應用實作』第九版,儒林書局2009,ISBN:
    9789574998630。
    [46]. C. Tomasi and R. Mandchi, “Bilateral filtering for gray and color images, ” Proc.
    of IEEE Computer Vision, pp. 836-846, 1998.
    [47]. A. Efros and T. Leung, “Texture Synthesis by Non-parametric Sampling.” Proc
    of IEEE Computer Vision, Vol. 2, pp. 1033-1038, 1999.
    [48]. Kaiming He, Jian Sun and Xiaoou Tang, “Guided Image Filtering,” Proc. of
    European conference on Computer vision,Vol. 1, pp. 1-14, 2010.
    [49]. T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro, “Motion Compensated
    interframe coding for video conferencing,” proc. of Nat. Telcommun, pp.
    5.3.1-5.3.5, 1981.
    [50]. J. L. Wu and J. C. Wang, “A new single image super resolution method using
    gradient operators and machine learning, ” proc. of CVGIP, pp. 449-456, 2010.
    [51]. http://www.youtube.com/user/bubblevision.
    [52]. Liu Chao and Meng Wang, “Removal of Water Scattering,” Intl. conf. on
    Computer Engineering and Technology, Vol. 2, pp. 35-39, 2010.
    [53]. M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of
    classical waves: microscopy, mesoscopy and diffusion,” Reviews of Modern
    Physics, Vol. 71, No. 1, pp. 313-371, 1999.
    [54]. E. Trucco and A.T. Olmos-Antillon, “Self-Tuning Underwater Image
    Restoration,” IEEE J. Ocean. Eng., Vol. 31, pp. 511-519, 2006.
    [55]. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure
    by polarization analysis,” IEEE J. Ocean. Eng., Vol. 30, pp. 570-587, 2005.
    [56]. Junku Yuh and Michael West, “Underwater Robotics,” Advanced Robotic, Vol.15, No. 5, pp. 609-639, 2001.
    [57]. A. Yamashita, M. Fujii and T. Kaneko, “Color Registration of Underwater
    Image for Underwater Sensing with Consideration of Light attenuation,” Intl.
    conf. on Robotics and Automation, pp. 4570-4575, 2007.
    [58]. Weilin Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, J. L. Forand,
    “Automated underwater image restoration and retrieval of related optical
    properties,” Proc. of IGARSS, Vol. 1, pp. 1889-1892, 2007.
    [59]. Raimondo Schettini and Silvia Corchs, “Underwater Image Processing: State of
    the Art of Restoration and Image Enhancement Methods,” Journal of EURASIP
    on Advances in Signal Processing, Vol. 2010, pp. 1-14, 2010.
    [60]. S. Dai, M. Han, Y. Wu and Y. Gong, “Bilateral Back-Projection for Single
    Image Super Resolution,” Proc. of IEEE Multimedia and Expo, pp. 1039 -1042,
    2007.
    口試委員
  • 李宗南 - 召集委員
  • 劉興民 - 委員
  • 郭忠民 - 委員
  • 陳永福 - 委員
  • 蔣依吾 - 指導教授
  • 口試日期 2011-06-21 繳交日期 2011-07-25

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫