Responsive image
博碩士論文 etd-0726105-225536 詳細資訊
Title page for etd-0726105-225536
論文名稱
Title
採用波包調制高效率功率放大器之新型線性發射機
A Novel Linear RF Transmitter Using High-Efficiency Power Amplifier Applied with Envelope Modulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-12
繳交日期
Date of Submission
2005-07-26
關鍵字
Keywords
雙端時變調制發射機、極座標調制發射機、座標旋轉數位演算法
Transmitter with Polar Modulation, Transmitter with Two-Terminal Time Varying Modulation, CORDIC (COordinate Rotation DIgital Compute)
統計
Statistics
本論文已被瀏覽 5739 次,被下載 0
The thesis/dissertation has been browsed 5739 times, has been downloaded 0 times.
中文摘要
本論文主要實踐一兼具高效率與高線性度之射頻發射機。以座標旋轉數位演算法在FPGA上實現一極座標轉換單元,取代傳統波包消除重建架構中的波包偵測器與限制器,不僅具有更精確的調制品質並且適合於單晶片系統。波包路徑以一階差異積分調制配合高效率切換式直流轉換器可高效率地放大波包訊號,配合E類功率放大器之輸出電壓與供應電壓間具有良好的線性關係,使極座標調制發射機可同時兼具高效率與高線性度。此外,提出一雙端時變調制發射機架構,在E類功率放大器射頻輸入端施予IQ調制而在供應電壓端施予波包調制,配合動態輸入功率控制操作,可使發射機之轉換效率或線性度都幾乎能與輸出功率無關。以實際傳送1.2288 Msps QPSK之CDMA2000 1x訊號為例,發射機在輸出功率為10~22 dBm之範圍內,汲極效率約為48 %,ACPR約為47 dB,EVM約為6 %。
Abstract
Abstract:

This thesis mainly implemented an RF transmitter with high efficiency and high linearity. A Cartesian to Polar transformation was implemented by CORDIC algorithm using FPGA. By replacing the envelope detector and limiter in traditional envelope elimination and restoration transmitter, this technique not only achieves more accurate modulation quality, but also becomes more suitable for single chip system. Applying the first order delta-sigma modulation and highly efficient switching-mode DC converter, the envelope signal was amplified highly efficiently. Due to the class-E power amplifier having good linear relation between output voltage and supply voltage, the polar modulation transmitter can achieve high efficiency and high linearity simultaneously. Furthermore, this thesis purposed a new transmitter with two-terminal time-varying modulation. The IQ modulated signal was fed to the input terminal of class-E amplifier, while the envelope signal was used to amplitude modulate the voltage supply terminal. With dynamic input power control, the conversion efficiency and linearity are independent of output power in the purposed architecture. From the experimental results, while transmitting a QPSK-modulated CDMA2000 1x signal with 1.2288 Msps data rate, the transmitter achieve 48 % in drain efficiency, 47 dB in ACPR, and 6 % in EVM at the output power ranging from 10 to 22 dBm.
目次 Table of Contents
第一章 緒論
1.1 背景簡介
1.2 章節規劃
第二章 基頻數位電路設計
2.1 基頻數位電路架構
2.2 採用CORDIC演算法之波包與相位分離單元
2.2.1 CORDIC演算法原理
2.2.2 CORDIC演算法模擬
2.3 CDMA2000 1x 數位濾波器
2.4 半頻帶濾波器
2.5 線性內插器
2.6 微分器
2.7 一階差異積分調制器
2.8 基頻數位電路之系統模擬
2.9 數位類比轉換器模組
2.10 實驗結果
第三章 波包路徑之切換式直流轉換器晶片設計
3.1 互補切換式直流轉換器之架構
3.2 設計方法與模擬結果
3.2.1 設計流程
3.2.2 切換式直流轉換器模擬
3.3 切換式直流轉換器晶片量測
第四章 1.95 GHz之E類功率放大器設計
4.1 E類功率放大器之架構
4.2 E類功率放大器積體電路設計與量測
4.2.1 設計流程
4.2.2 模擬與量測結果
4.3 應用於極座標與雙端時變調制架構之線性度與效率量測
第五章 高效率線性發射機之實驗結果
5.1 極座標調制架構之發射機量測
5.1.1 理想波包訊號下之極座標調制發射機量測
5.1.2 實際波包訊號下之極座標調制發射機量測
5.2 雙端時變調制架構之發射機量測
5.2.1 理想波包訊號下之雙端時變調制發射機量測
5.2.2 實際波包訊號下之雙端時變調制發射機量測
5.3 動態輸入功率控制之極座標調制發射機量測

第六章 結論
參考文獻
參考文獻 References
[1] P.B. Kenington, High-Linearity RF Amplifier Design, Artech House, Boston USA, 2000, ch. 4.
[2] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Artech House, Boston USA, 1999, ch.9.
[3] Y. Kim, Y. Yang, S. H. Kang, and B. Kim, “Linearization of 1.85 GHz amplifier using feedback predistortion loop,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 1675–1678.
[4] Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “An adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, pp. 22–44, April. 2003.
[5] J. K. Cavers, “Adaptive behavior of a feedforward amplifier linearizer,” IEEE Trans. Veh. Technol., vol. 44, pp. 31–40, Feb. 1996.
[6] R. G. Meyer, R. Eschenbach, and W. M. Edgerley, “A wide-band feedforward amplifier,” IEEE J. Solid-State Circuits, vol. SSC-9, pp. 422–428, Dec. 1974.
[7] K. Konstantinou and D. K. Paul, “Analysis and design of broadband, high efficiency feedforward amplifiers,” in IEEE MTT-S Int. Microwave Symp. Dig., 1996, pp. 867–870.
[8] S. P. Stapleton, “Amplifier linearization using adaptive digital predistortion,” Applied Microwave Wireless, vol. 13, pp. 72–77, Feb. 2001.
[9] S. Boumaiza and F. M. Ghannouchi, “Realistic power-amplifiers characterization with application to baseband digital predistortion for 3G base stations,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 3016–3021, Dec. 2002.
[10] S. Kusunoki, K. Yanamoto, and T. Iida, “Power-amplifier module with digital adaptive predistortion for cellular phones,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2979–2986, Dec. 2002.
[11] L. R. Kahn, “Single sideband transmission by envelope elimination and restoration,” in Proc. IRE, vol. 40, pp .803-806, Jul. 1952.
[12] D. C. Cox, “Linear amplification with nonlinear components,” IEEE Trans. Commun., vol. 22, pp. 1942–1945, Dec. 1974.
[13] J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, and T. Quach, “High efficiency CDMA power amplifier using dynamic envelope tracking technique,” IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 837-876.
[14] G. Hanington, P. F. Chen, P. M. Asbeck, and L. E. Larson, “High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 1471-1476, Aug. 1999.
[15] B. Sahu and G. A. Ricon-Mora, “A high-efficiency linear RF power amplifier with power-tracking dynamically adaptive buck-boost supply,” IEEE Trans. Microwave Theory and Tech., vol. 52, pp. 112-120, Jan. 2004.
[16] F.H. Raab, “Intermodulation distortion in Kahn-technique transmitters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2273-2278, Dec. 1996.
[17] T. Sowlati, Y. Greshishchev, C. Salama, T. Andre, G. Rabjohn, and J. Sitch, “Linear transmitter design using high efficiency class E amplifier,” in Proc. 6th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1995, pp. 1233.
[18] F.H. Raab et. al., “L-Band transmitter using Kahn EER technique,” IEEE Trans. Microwave Theory and Tech., vol. 46, pp. 2220-2225, Dec. 1998.
[19] F.H. Raab and D.J. Rupp, “High efficiency single sideband HF/VHF transmitter based upon envelope elimination and restoration,” in Proc. 6th International Conference on HF Radio Systems and Techniques, 1994, pp. 21–25.
[20] W.B. Sander, S.V. Schell, and B.L. Sander, “Polar modulator for multi- mode cell phones,” in Proc. IEEE Custom Integrated Circuits Conf., 2003, pp. 439-445.
[21] A. Hadjichristors, “Transmit architectures and power control schemes for low cost highly integrated transceivers for GSM/EDGE applications,” in Proc. IEEE Int. Symp. Circuits and Systems ISCAS’03, 2003, pp. 610-613.
[22] E. McCune, “Multi-mode and multi-band polar transmitter for GSM, NADC, and EDGE,” in Proc. IEEE WCNC, 2003, pp. 812-815.
[23] A. W. Hietala, “A quad-band 8PSK/GMSK polar transceiver,” in IEEE MTT-S Radio Frequency Integrated Circuits Symposium, Dig., 2005 pp. 9-12.
[24] T. Sowlati, D.Rozenblits, R.Pullela, M. Damgaard, D. Koh, E. McCarthy, D. Ripley, F. Balteanu, I. Gheorghe, K. Juan, S. Wloczysiak, and D. Firoiu, “Polar loop transmitter for GSM/GPRS/EDGE” in IEEE MTT-S Radio Frequency Integrated Circuits Symposium, Dig., 2005 pp. 13-16.
[25] J.K. Jau, F.Y. Han, M.C. Du, and T.S. Horng, "Polar modulation-based RF power amplifiers with enhanced envelope processing technique," in IEEE MTT-S European Microwave Conference, Dig., 2004 pp. 1317-1320.
[26] K.C. Peng, J.K. Jau and T.S. Horng, "A novel EER transmitter using two-point delta-sigma modulation scheme for WLAN and 3G applications," in IEEE MTT-S International Microwave Symposium, Dig., 2002, pp. 1651-1654.
[27] K.C. Peng, C.H. Huang, C.J. Li, and T.S. Horng, "High-performance frequency-hopping transmitters using two-point delta-sigma modulation," IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 2529-2535, Nov. 2004.
[28] CORDIC FAQ. [Online]. Available: http://www.dspguru.com/info/faqs/cordic. htm
[29] J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook, Artech House, 1998.
[30] S. R. Norsworthy, R. Schreier, G. C. Temes, Delta-Sigma Data Converters, Piscataway, NJ: IEEE Press, 1997
[31] F.H. Raab and D.J. Rupp, “Class-S high efficiency amplitude modulator,” RF Design, vol. 17, pp. 70-74, May 1994.
[32] 杜孟哲,採極座標調制之射頻發射機,國立中山大學電機工程研究所碩士論文,2004。
[33] AD9761 Dual 10-bits TxDAC with 2x Interpolation Filters Data Sheet, Analog Devices Inc., Norwood, MA, 2003.
[34] AD8042 Dual 160 MHz Rail-to-Rail Amplifier Data Sheet, Analog Devices Inc., Norwood, MA, 2004.
[35] 趙哲寬, 洪子聖, 陳俞安, 高效率多模微波發射機,中華民國專利申請中,2005。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.71.239
論文開放下載的時間是 校外不公開

Your IP address is 18.117.71.239
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code