論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2032-08-26
校外 Off-campus:開放下載的時間 available 2032-08-26
論文名稱 Title |
以霧化化學氣相沉積法製備二氧化鉿/氧化鎂薄膜及其應用於電阻式隨機存取記憶體之研究 Investigation of HfO2/MgO Thin Films Deposited by Mist Chemical Vapor Deposition and Their Applications to Resistive Random Access Memory |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
96 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-07-26 |
繳交日期 Date of Submission |
2022-08-26 |
關鍵字 Keywords |
電阻式記憶體、氧化鎂、氯化銨、氧化鉿、穩定度、傳輸特性、霧化化學氣相沉積法 Resistive random access memory, MgO, HfO2, NH4Cl, Stability, Conduction mechanisms, Mist-CVD |
||
統計 Statistics |
本論文已被瀏覽 155 次,被下載 0 次 The thesis/dissertation has been browsed 155 times, has been downloaded 0 times. |
中文摘要 |
本論文主要探討以霧化化學氣相沉積法所沉積電阻轉換層的電阻式記憶體,並針對元件的耐久度、數據保留時間、穩定度以及傳輸特性去做研究。在本論文中我們分別測試了氧化鎂、氧化鎂摻雜氯化銨、二氧化鉿以及二氧化鉿與摻雜氯化銨的氧化鎂做疊層以這四種結構分別以不同厚度作為電阻轉換層去做測試,其中以電阻轉換層為40nm的二氧化鉿與30nm的氧化鎂摻雜氯化銨做疊層的元件特性最佳,在耐久度測試中可達1000次以上循環操作,且在經過1000次循環操作後記憶窗口還維持7×10^4,數據保留時間也可達10^4秒而無明顯衰退。而霧化化學氣相沉積法能在非真空環境下進行沉積,且所使用的前驅物成本也相對低廉。綜合上述可知使用霧化化學氣相沉積法所製成的銀/二氧化鉿/氧化鎂摻雜氯化銨/矽結構的電阻式記憶體不但有優良的元件特性,亦具備極高的經濟價值。 |
Abstract |
This study mainly discusses the resistance-change-layers of RRAMs deposited by the mist-CVD and the endurance, retention time, stability, and conduction mechanisms of the devices are investigated. MgO, MgO: NH4Cl, HfO2, and HfO2/MgO: NH4Cl stack, are fabricated and their electrical characteristics are analyzed. Among of these devices, the device with a resistance-change-layer of 40nm HfO2 and 30nm MgO: NH4Cl layered has the best characteristics, which reaches more than 1000 cycle operations in the endurance test, and the memory window maintains 7×104 after 1000 cycles. The retention time also reaches 104 seconds without degradation. Besides, thin film deposited by mist-CVD is operated in a non-vacuum environment, and the cost of the precursors is relatively low. Based on the above advantages, the RRAM with Ag/HfO2/MgO: NH4Cl/Si structure made by the mist-CVD not only has excellent device characteristics but also has extremely high economic value. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄v 圖次 vii 表次 xi 第一章緒論 1 1.1前言 1 1.2電阻式記憶體 3 1.2.1電阻式記憶體切換機制 3 1.2.2電阻轉換層傳導機制 4 1.3研究動機 12 1.4文獻回顧 12 1.5研究架構 18 第二章元件製程 19 2.1基板清洗 19 2.2前驅物備製 19 2.3薄膜沉積 19 2.4金屬電極 22 第三章材料分析 23 3.1X射線繞射儀 23 3.2X射線光電子能譜儀 24 3.3穿透式電子顯微鏡 26 第四章單層氧化鎂與氧化鎂摻雜氯化銨之元件特性分析 27 4.1量測參數定義 27 4.2單層氧化鎂之特性分析 29 4.3單層氧化鎂摻雜氯化銨之特性分析 41 第五章二氧化鉿與二氧化鉿/氧化鎂摻雜氯化銨之疊層元件分析 52 5.1單層二氧化鉿之特性分析 52 5.2雙層二氧化鉿/氧化鎂摻雜氯化銨之特性分析 59 第六章電阻轉換層之載子傳輸特性以及元件特性比較 66 6.1電阻轉換層之載子傳輸特性 66 6.2本論文所研製元件特性比較 75 6.3與近期相關文獻的特性比較 76 第七章結論與未來研究方向 77 7.1結論 77 7.2未來研究方向 78 參考文獻 79 |
參考文獻 References |
[1] J. Sun, J. B. Tan, and T. Chen. “HfOx-based RRAM device with sandwich-like electrode for thermal budget requirement.” IEEE Trans. Electron Devices, vol. 67, no. 10, pp. 4193-4200, Oct. 2020. [2] J. Ma, Z. Chai, W. D. Zhang, J. F. Zhang, J. Marsland, B. Govoreanu, R. Degraeve, L. Goux, and G. S. Ka. “TDDB mechanism in A-Si/TiO2 nonfilamentary RRAM device.” IEEE Trans. Electron Devices, vol. 66, no. 1, pp. 777-784, Jan. 2018. [3] J. Ma, Z. Chai , W. D. Zhang , J. F. Zhang , J. Marsland, B. Govoreanu, R. Degraeve, L. Goux, and G. S. Ka. “Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer.” Nanotechnology, vol. 21, no. 49, 495201, Dec. 2010. [4] P. Zhou , L. Ye, Q. Q. Sun, P. F. Wang, A. Q. Jiang, S. J. Ding and D. W. Zhang. “Effect of concurrent joule heat and charge trapping on RESET for NbAlO fabricated by atomic layer deposition” Nanoscale Res. Lett., vol. 8, 91, Feb. 2013. [5] C. C. Hsu, P. X. Long, and Y. S. Lin. “Enhancement of resistive switching characteristics of Sol-Gel TiOx RRAM using Ag conductive bridges.” IEEE Trans. Electron Devices, vol. 68, no. 1, pp. 95-102., Nov. 2020 [6] Y. Li , X. Li, L. Fu, R. Chen, H. Wang , and X. Gao. “Effect of interface layer engineering on resistive switching characteristics of ZrO2-based resistive switching devices.” IEEE Trans. Electron Devices, vol. 65, no. 12, pp. 5390-5394, Dec. 2018. [7] Y. Li, X. Pan, Y. Zhang, and X. Chen. “Write-once-read-many-times and bipolar resistive switching characteristics of TiN/HfO2/Pt devices dependent on the electroforming polarity.” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1149-1152, Nov. 2015. [8] Y. Wang, X. Chen, Y. Cheng, X. Zhou, S. Lv, Y. Chen, Y. Wang, M. Zhou, H. Chen, Y. Zhang, Z. Song, and G. Feng. “RESET distribution improvement of phase change memory: the impact of pre-programming.” IEEE Electron Device Lett., vol. 35, no. 5, pp. 536-538, May 2014. [9] F. C. Chiu. “A review on conduction mechanisms in dielectric films.” Adv. Mater. Sci. Eng., vol. 2014, 578168, Jan. 2014. [10] P. H. Chen, K. C. Chang, T. C. Chang, T. M. Tsai, C. H. Pan, T. J. Chu, M. C. Chen, H. C. Huang, I. Lo, J. C. Zheng, and S. M. Sze “Bulk oxygen–ion storage in indium–tin–oxide electrode for improved performance of HfO2-based resistive random access memory.” IEEE Electron Device Lett., vol. 37, no. 3, pp. 280-283, Mar. 2016. [11] S. Lee, T. Kim, B. Jang, W. Y. Lee, K. C. Song, H. S. Kim, G. Y. Do, S. B. Hwang, S. Chung, and J. Jang. “Impact of device area and film thickness on performance of Sol-Gel processed ZrO2 RRAM.” IEEE Electron Device Lett., vol. 39, no. 5, pp. 668-671, Mar. 2018. [12] L. Zhao, J. Zhang, Y. He, X. Guan, H. Qian, and Z. Yu. “Dynamic modeling and atomistic simulations of SET and RESET operations in TiO2-based unipolar resistive memory.” IEEE Electron Device Lett., vol. 32, no. 5, pp. 677-679, May 2011. [13] L. Zhao, J. Zhang, Y. He, X. Guan, H. Qian, and Z. Yu. “Dynamic modeling and atomistic simulations of SET and RESET Operations in TiO2-based unipolar resistive memory.” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 63, no. 9, pp. 1487-1498, Aug. 2016. [14] F. Song, H. Wang, J. Sun, B. Dang, H. Gao, M. Yang, X.. Ma, and Y. Hao. “Solution-processed physically transient resistive memory based on magnesium oxide.” IEEE Electron Device Lett., vol. 40, no. 2, pp. 193-195, Feb. 2019. [15] D. J. J. Loy, P. A. Dananjaya1, W. C. Law, G. J. Lim1, F. Tan, X. L. Hong , S. C. W. Chow, E. H. Toh and W. S. Lew. “Hopping conduction temperature investigations on high retention electrochemical metallization MgO-based resistive switching devices in the low resistance state.” 2019 Electron Devices Technology and Manufacturing Conference (EDTM), 18739032, Mar. 2019. [16] C. Y. Han, Z. X. Zhang, W. H. Liu , X. Li, L. Geng, L. Wang , and X. L. Wang. “Effects of CaO interlayer on the performance of biodegradable transient MgO-based resistive random access memory.” IEEE Trans. Electron Devices, vol. 67, no. 2, pp. 481–186, Mar. 2019. [17] D. Kumar , P. S. Kalaga , and D. S. Ang. “Visible light detection and memory capabilities in MgO/HfO2 bilayer-based transparent structure for photograph sensing.” IEEE Trans. Electron Devices, vol. 67, no. 10, pp. 4274-4280, Oct. 2020. [18] F. Zahoor, T. Z. A. Zulkifli and F. A. Khanday. “Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications.” Nanoscale Res. Lett., vol. 15, no. 1, 90, Apr. 2020. [19] B. Chen, Y. Lu, B. Gao, Y. H. Fu1, F. F. Zhang, P. Huang, Y. S. Chen, L.F. Liu, X. Y. Liu, J. F. Kang, Y. Y. Wang, Z. Fang, H. Y. Yu, X. Li, X. P. Wang, N. Singh, G. Q. Lo, D. L. Kwong. “Physical mechanisms of endurance degradation in TMO-RRAM.” 2011 International Electron Devices Meeting, 12504219, Jan. 2012. [20] P. H. Chen, Y. Ting Su, and F. C. Chang. “Stabilizing resistive switching characteristics by inserting indium-tin-oxide layer as oxygen ion reservoir in HfO2-based resistive random access memory.” IEEE Trans. Electron Devices, vol. 66, no. 3, pp. 1276-1280, Mar. 2019. [21] H. Wang, S. Cao, B. Yang, H. Li, M. Wang, X. Hu, K. Sun, and Z. Zang. “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process.” Sol. RRL, vol. 4, no. 1, 1900363, Jan. 2020. [22] Z. Zhang, F. Wang , K. Hu , Y. She, S. Song, Z. Song and K. Zhang. “Improvement of resistive switching performance in sulfur-doped HfOx-based RRAM.” Materials, vol. 14, no. 12, 3330, June 2021. [23] U. Chand, K. C. Huang, C. Y. Huang. “Investigation of thermal stability and reliability of HfO2 based resistive random access memory devices with cross-bar structure.” J. Appl. Phys., vol. 117, no. 18, 184105, May 2015. [24] S. Yu, Y. Y. Chen, X. Guan. “A Monte Carlo study of the low resistance state retention of HfOx based resistive switching memory.” Appl. Phys. Lett., vol. 100, no. 4, 043507, Jan. 2012. [25] H. Yangl, N. Sal, L. Tangl, X. Liu .T. Kangl , R. Han H. Y. Yu, C. Renc, M. F. Li, D. S. H. Chan:, O-L. Kwong. “TDDB characteristics of ultra-thin HfN/HfO/sub 2/ gate stack.” Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004., 8503812, Oct. 2004. [26] C. L. Lin, M. Y. Chou, J. J. Hong, T. K. Kang, S. C. Wu, and P. C. Juan. “Comparison of breakdown mechanism of HfO2 and HfSiOx high-k gate dielectrics with N2 RTA treatment on TDDB constant voltage stress.” 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, 10866792, July 2009. [27] C. C. Hsu, P. X. Long, and Y. S. Lin. “Enhancement of resistive switching characteristics of Sol-Gel TiOx RRAM using Ag conductive bridges.” IEEE Trans. Electron Devices, vol. 68, no. 1, pp. 95-102, Jan. 2021. [28] A. F. Qasrawi and N. M. Gasanly. “Energy band diagram and current transport mechanism In P-MgO/n-Ga4Se3S.” IEEE Trans. Electron Devices, vol. 62, no. 1, pp. 102-106, Jan. 2015. [29] D. P. Xu, L. J. Yu, X. D. Chen, L. Chen, Q. Q. Sun, H. Zhu, H. L. Lu, P. Zhou, S. J. Ding and D. W. Zhang . “In situ analysis of oxygen vacancies and band alignment in HfO2/TiN structure for CMOS applications.” Nanoscale Res. Lett., vol. 12, 311, Apr. 2017. [30] C. F. Liu, X. G. Tang, L. Q. Wang, H. Tang, Y. P. Jiang, Q. X. Liu, W. H. Li and Z. H. Tang. “Resistive switching characteristics of HfO2 thin films on mica substrates prepared by Sol-Gel process.” NANOMATERIALS-BASEL, vol. 9, no. 8, Aug. 2019. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2032-08-26 校外 Off-campus:開放下載的時間 available 2032-08-26 您的 IP(校外) 位址是 216.73.216.89 現在時間是 2025-06-17 論文校外開放下載的時間是 2032-08-26 Your IP address is 216.73.216.89 The current date is 2025-06-17 This thesis will be available to you on 2032-08-26. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-08-26 |
QR Code |