論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2029-08-27
校外 Off-campus:開放下載的時間 available 2029-08-27
論文名稱 Title |
基於物理不可複製函數且適用於海洋環境中之雙向認證機制 PUF-Based Mutual Authentication Protocol for Marine Environment |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
78 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-18 |
繳交日期 Date of Submission |
2024-08-27 |
關鍵字 Keywords |
水下物聯網、物理不可複製函數、輕量化、認證協定、環境因子 Underwater Internet of Things, Physically Unclonable Functions, Lightweight, Authentication Protocols, Environmental Factors |
||
統計 Statistics |
本論文已被瀏覽 91 次,被下載 0 次 The thesis/dissertation has been browsed 91 times, has been downloaded 0 times. |
中文摘要 |
水下環境對於電子設備有其獨特的挑戰,如高壓、高鹽度和複雜的水文流動、低傳輸效率的聲學通訊方式、裝置對於功耗的限制,皆會影響水下節點的正常運作,對水下物聯網(Underwater Internet of Things)的發展構成了阻礙。但隨著科技的持續發展,水下物聯網在海洋科學研究、資源探勘以及環境監控等領域變得日益重要。作為一種新興的網路技術雖然取得了顯著進展,但在目前的研究和應用中,資訊安全問題通常未受到足夠的關注,當前水下無線通訊的開放性質使其容易受到竊聽、干擾、中間人攻擊、偽造攻擊等安全威脅,而特殊的水下環境則為裝置通訊和身份驗證帶來前所未有的挑戰。上述都指出了需對水下物聯網之安全性進一步研究的迫切性,本研究提出了一種新穎的解決方法,即首次將 PUF 技術與海洋環境因子結合,開發一種新型的輕量化認證協定,將水下環境的動態變化作為認證過程的一部分,這項創新不僅填補了現有研究的空白,也為水下物聯網的安全通訊開闢了新的道路。 |
Abstract |
The underwater environment presents unique challenges to electronic devices, including high pressure, high salinity, complex hydrodynamic flows, low transmission efficiency through acoustic communication methods, and device constraints on power consumption. These factors can significantly affect the normal operation of underwater nodes, posing obstacles to the development of the Underwater Internet of Things (UIoT). However, as technology advances, the importance of UIoT in marine research, resource exploration, and environmental monitoring has become increasingly significant. Yet, as an emerging network, despite progress in its technology, current research and applications have not fully addressed information security issues. The open nature of current underwater wireless communications makes it susceptible to security threats such as eavesdropping, interference, man-in-the-middle attacks, and spoofing attacks, while the uniqueness of the underwater environment introduces unprecedented challenges for device communication and identity verification. These issues underscore the urgent need for further research into the security of the Underwater Internet of Things. This study proposes an innovative approach by integrating Physically Unclonable Functions (PUFs) with marine environmental factors for the first time, developing a new type of lightweight authentication protocol. This protocol incorporates the dynamic changes in the underwater environment as part of the authentication process. This innovation not only fills a gap in existing research but also paves a new path for secure communication within the UIoT. |
目次 Table of Contents |
論文審定書 .......... i Acknowledgments .......... iv 摘要 .......... v Abstract .......... vi Table of Figures .......... x Table of Tables .......... xi Chapter 1 Introduction .......... 1 1.1 Scenario and Purpose .......... 3 1.2 Contributions .......... 3 1.3 Structure of the Thesis .......... 4 Chapter 2 Preliminaries .......... 6 2.1 Physically Unclonable Functions .......... 6 2.2 Fuzzy Extractor .......... 7 2.3 Timestamp .......... 8 2.4 Symmetric Encryption .......... 9 2.5 Exclusive-or Operation .......... 10 2.6 One-Way Hash Function .......... 11 2.7 Environmental Factors .......... 12 2.8 Advanced Encryption Standard (AES) in Cipher Block Chaining (CBC) mode .......... 19 2.9 Indistinguishability Under Chosen Plaintext Attack (IND-CPA) Secure .......... 21 Chapter 3 Related Works .......... 23 3.1 Gaoetal.’s Physically Unclonable Functions Research .......... 23 3.2 Siddiquietal.’s PUF Authentication Scheme .......... 24 3.3 Mitevetal.’s Multifactor Authentication Protocol .......... 25 3.4 Zhengetal.’s Mutual Authentication Protocol .......... 26 3.5 Jiang’s Underwater Networks Secure Research .......... 27 3.6 Islam and Taher’s Authentication Mechanism for Underwater .......... 28 3.7 Zhouetal.’s ID-Based Signature System for Underwater .......... 29 3.8 Liu et al.’s Authentication for Underwater Sensor Networks .......... 30 3.9 Shi et al.’s Database-based Authentication for Underwater Acoustic Networks .......... 30 3.10 Zhao et al.’s Physical Layer Authentication for Underwater Acoustic Networks .......... 31 3.11Reasons for Conducting the Study .......... 32 Chapter 4 The Proposed Protocol .......... 33 4.1 System Roles .......... 33 4.2 System Scenario .......... 34 4.3 Registration Scheme .......... 35 4.4 Authentication Scheme .......... 38 Chapter 5 Security Analysis .......... 44 5.1 Adversarial Model .......... 44 5.2 Definitions of Security .......... 45 5.3 Formal Proof .......... 46 5.4 Correctness .......... 48 5.5 Heuristic Proof .......... 49 5.6 HLPSL Analysis .......... 52 Chapter 6 Evaluation .......... 56 6.1 Functionalities Comparison .......... 56 6.2 Transmission Cost Comparison .......... 58 6.3 Computation Cost Comparison .......... 58 6.4 Scenarios Comparison .......... 59 6.5 Summary .......... 61 Chapter 7 Conclusions .......... 63 Bibliography .......... 65 |
參考文獻 References |
[1] Nikolais Fofonoff and Robert Millard. Algorithms for computation of fundamental prop- erties of seawater. UNESCO Technical Papers in Marine Science, (44):53, 1983. [2] Phillip Rogaway. Evaluation of some blockcipher modes of operation. Cryptography Research and Evaluation Committees (CRYPTREC), (630), 2011. [3] Yansong Gao, Said F. Al-Sarawi, and Derek Abbott. Physical unclonable functions. Na- ture Electronics, 3(2):81–91, 2020. [4] Zeeshan Siddiqui, Jiechao Gao, and Muhammad Khurram Khan. An improved lightweight puf–pki digital certificate authentication scheme for the internet of things. IEEE Internet of Things Journal, 9(20):19744–19756, 2022. [5] Miroslav Mitev, Mahdi Shakiba-Herfeh, Martin Reed Arsenia Chorti, and Sajjad Baghaee. A physical layer, zero-round-trip-time, multifactor authentication protocol. IEEE Access, 10:74555–74571, 2022. [6] Yue Zheng, Wenye Liu, Chongyan Gu, and Chip-Hong Chang. Puf-based mutual authen- tication and key exchange protocol for peer-to-peer iot applications. IEEE Transactions on Dependable and Secure Computing, 2022. [7] Shengming Jiang. On securing underwater acoustic networks: A survey. IEEE Commu- nications Surveys & Tutorials, 21(1):729–752, 2018. [8] Al Amin Islam and Kazi Abu Taher. A novel authentication mechanism for securing underwater wireless sensors from sybil attack. In 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pages 1–6. IEEE, 2021. [9] ZhiliZhou,BrijBhooshanGupta,AkshatGaurav,YujiangLi,MiltiadisD.Lytras,andNa- dia Nedjah. An efficient and secure identity-based signature system for underwater green transport system. IEEE Transactions on Intelligent Transportation Systems, 23(9):16161– 16169, 2022. [10] Chuangyuan Liu, Ruiqin Zhao, Ting Shi, and Haiyan Wang. Node authentication for underwater sensor networks based on time reversal and linucb. OCEANS 2023-Limerick, pages 1–5, 2023. [11] Ting Shi, Ruiqin Zhao, Xiaohong Shen, and Haiyan Wang. Database-based physical layer authentication for dynamic underwater acoustic networks. In OCEANS 2023-Limerick, pages 1–4. IEEE, 2023. [12] RuiqinZhao,TingShi,ChuangyuanLiu,XiaohongShen,andOctaviaA.Dobre.Physical layer authentication without adversary training data in resource-constrained underwater acoustic networks. IEEE Sensors Journal, 2023. [13] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for de- signing efficient protocols. ACM Conference on Computer and Communications Security (CCS), pages 62–73, 1993. [14] Prosanta Gope and Biplab Sikdar. Lightweight and privacy-preserving two-factor authen- tication scheme for iot devices. IEEE Internet of Things Journal, 6(1):580–589, 2019. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2029-08-27 校外 Off-campus:開放下載的時間 available 2029-08-27 您的 IP(校外) 位址是 216.73.216.113 現在時間是 2025-05-29 論文校外開放下載的時間是 2029-08-27 Your IP address is 216.73.216.113 The current date is 2025-05-29 This thesis will be available to you on 2029-08-27. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2029-08-27 |
QR Code |