論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2029-08-27
校外 Off-campus:開放下載的時間 available 2029-08-27
論文名稱 Title |
使用近紅外光放光性質胜肽穩定的金奈米團簇與硫醇化聚丙烯酸反應進行銅離子檢測 Using NIR-Emitting Peptide-Stabilized Gold Nanocluster to React with Thiolated Polyacrylic Acid for Copper Ion Detection |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
120 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-19 |
繳交日期 Date of Submission |
2024-08-27 |
關鍵字 Keywords |
金奈米團簇、胜肽、近紅外光、聚丙烯酸、銅離子檢測 Gold nanoclusters, Peptide, near-infrared, Polyacrylic acid (PAA), Copper ion detection |
||
統計 Statistics |
本論文已被瀏覽 30 次,被下載 0 次 The thesis/dissertation has been browsed 30 times, has been downloaded 0 times. |
中文摘要 |
金奈米團簇(gold nanocluster, AuNCs)是由幾個至數十個的金原子所組成,尺寸小於2 nm,具有好的光穩定性、大的 Stokes shift、較長的螢光生命週期以及佳的生物相容性,因此讓其應用受到廣泛的關注。再加上金奈米團簇放光位於近紅外光區間 (700-900 nm) 有較小的自體螢光干擾和吸收係數,能夠穿透至更深的生物組織中,使的在生物成像和感測更具吸引力。 本研究首先以三種不同胜肽鏈 (RCR, Arg-Cys-Arg、KCK, Lys-Cys-Lys、GCG, Gly- Cys- Gly) 作為模板合成近紅外光 (NIR) 放光的金奈米團簇。接著將聚合物:聚丙烯酸 (Poly acrylic acid, PAA) 修飾上硫醇分子,形成硫化聚丙烯酸(Thiolated- Poly acrylic acid, TPAA) ,之後將三種不同胜肽金奈米團簇,與硫化聚丙烯酸反應。卻發現RCR-AuNCs相較於其他兩種短鏈胜肽GCG、KCK有良好的鍵結效果,其原因可能是R (argnine) 胺基酸有類似雙牙基的結構所導致,其側鏈上含有兩個胺基可以與TPAA上的羧基基團形成雙齒配位鍵,進而增強結合力,以靜電吸引力鍵結方式合成穩定的金奈米團簇聚集物,硫醇氧化所形成的雙硫鍵會使之互相交聯,讓金奈米團簇聚集物尺寸增加,因此可以透過離心進行純化,得到RCR-AuNCs@TPAA複合材料來進行後續實驗。 接著將合成出的RCR-AuNCs@TPAA複合材料對銅離子進行檢測,發現其螢光強度會隨著銅離子濃度增加而導致螢光淬滅現象,該機制受光誘導電子轉移 (Photoinduced electron transfer, PET) 影響導致消光,且該探針具有高靈敏度、良好的選擇性和快速檢測的能力,其偵測極限為0.22 nM,並應用於檢測真實樣品中的飲用水,未來將有更大潛力應用於生物方面應用。 |
Abstract |
Gold nanoclusters (AuNCs) are fluorescent material composed of a small number of gold atoms. Their unique optical properties, including high photostability, large Stokes shift, and long fluorescence lifetime, make them ideal for various biomedical applications. The near-infrared emission (700-900 nm) of AuNCs minimizes autofluorescence and enables deeper tissue penetration, making them particularly attractive for bioimaging and biosensing. In this work, near-infrared (NIR) emitting gold nanoclusters (AuNCs) were synthesized using three different peptide templates: RCR (Arg-Cys-Arg), KCK (Lys-Cys-Lys), and GCG (Gly-Cys-Gly). Thiolated polyacrylic acid (TPAA) was prepared by modifying polyacrylic acid (PAA) with thiol molecules. Subsequently, the three types of peptide-AuNCs were reacted with TPAA. The results revealed that RCR-AuNCs exhibited significantly better binding affinity compared to the other two short peptide-AuNCs (GCG and KCK). This enhanced binding is attributed to the bidentate nature of the arginine (R) amino acid, whose side chain contains two amino groups capable of forming bidentate coordination bonds with the carboxyl groups of TPAA. This electrostatic attraction facilitated the formation of stable AuNCs aggregates. Furthermore, the disulfide bonds formed by thiol oxidation cross-linked the aggregates, leading to an increase in their size. Consequently, the RCR-AuNCs@TPAA composites could be purified by centrifugation for subsequent experiments. The synthesized RCR-AuNCs@TPAA composites were employed for the detection of copper ions. The fluorescence intensity of the composites was found to be quenched upon increasing the concentration of copper ions, indicating a photoinduced electron transfer (PET) quenching mechanism. This probe exhibited high sensitivity, selectivity, and rapid response, with a detection limit of 0.22 nM. The practical application of this probe was demonstrated by detecting copper ions in real water samples. This study suggests that RCR-AuNCs@TPAA composites have great potential for various biological applications. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目 錄 vi 圖 次 ix 表 次 xv 1 前言 1 1.1近紅外光金奈米團簇(AuNCs) 1 1.2以胜肽鏈合成的金奈米團簇 5 1.3硫醇化聚合物 9 1.4銅離子檢測 10 1.5淬滅機制-光誘導電子轉移(Photoinduced electron transfer, PET) 15 1.6研究動機 18 2實驗部分 19 2.1實驗藥品 19 2.2儀器設備 20 (1) 螢光光譜儀 (Fluorescence spectrometer) 20 (2) 雙光束紫外光/可見光光譜儀 (Double-beam UV-visible spectrophotometer) 20 (3) 粒徑分析儀 (Dynamic light scattering, DLS) 20 (4) 粒徑與界面電位分析儀 (Zeta potential) 21 (5) 高解析電子能譜儀 (High resolution X-ray photoelectron spectrometer) 21 (6) 軟物質專用穿透式電子顯微鏡 (Transmission electron microscope, TEM) 21 (7) 螢光生命週期儀 (Fluorescence lifetime Spectrometer) 22 (8) 紫外光電子能譜 (Ultraviolet Photoelectron Spectroscopy) 22 (9) 原子吸收光譜 (Atomic absorption spectroscopy, AA) 22 2.3材料合成 23 2.3.1合成不同種peptide-AuNCs 23 2.3.2合成硫化聚丙烯酸(Thiolated-Polyacrylic acid, TPAA) 24 2.3.3合成RCR-AuNCs@TPAA 24 2.4 DTNB染劑測試(Ellman's reagent) 24 2.5穩定性測試 25 2.6選擇性測試 25 2.7銅離子定量 26 2.8真實樣品檢測 26 3 結果與討論 27 3.1 透過不同短鏈胜肽為模板合成近紅外光的金奈米團簇 27 3.2 不同種類 peptide-Au NCs 在不同 pH 值下的表面電位 45 3.3 硫化聚丙烯酸(TPAA)的鑑定 49 3.4 硫化聚丙烯酸(TPAA)和不同種類 peptide-AuNCs的結合 54 3.5 RCR-AuNCs@TPAA的鑑定與光學分析 60 3.6 RCR-AuNCs和RCR-AuNCs@TPAA在生理條件下測試 70 3.7 利用RCR-AuNCs@TPAA檢測銅離子 74 3.7.1 RCR-AuNCs@TPAA探針與銅離子之反應條件優化探討 77 3.7.2 RCR-AuNCs@TPAA探針與銅離子之選擇性探討 82 3.8螢光淬滅機制 85 3.9 真實樣品檢測 95 4 結論 97 參考文獻 98 |
參考文獻 References |
(1) van de Looij, S. M.; Hebels, E. R.; Viola, M.; Hembury, M.; Oliveira, S.; Vermonden, T. Gold nanoclusters: imaging, therapy, and theranostic roles in biomedical applications. Bioconjugate Chemistry 2021, 33 (1), 4-23. (2) Kang, H.; Kang, M.-W.; Kashiwagi, S.; Choi, H. S. NIR fluorescence imaging and treatment for cancer immunotherapy. Journal for Immunotherapy of Cancer 2022, 10 (7). (3) Meng, X.; Pang, X.; Zhang, K.; Gong, C.; Yang, J.; Dong, H.; Zhang, X. Recent advances in near‐infrared‐II fluorescence imaging for deep‐tissue molecular analysis and cancer diagnosis. Small 2022, 18 (31), 2202035. (4) Zheng, Y.; Wu, J.; Jiang, H.; Wang, X. Gold nanoclusters for theranostic applications. Coordination Chemistry Reviews 2021, 431, 213689. (5) Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Analytical chemistry 2015, 87 (1), 216-229. (6) Chen, Y.; Montana, D. M.; Wei, H.; Cordero, J. M.; Schneider, M.; Le Guével, X.; Chen, O.; Bruns, O. T.; Bawendi, M. G. Shortwave infrared in vivo imaging with gold nanoclusters. Nano letters 2017, 17 (10), 6330-6334. (7) Song, X.; Zhu, W.; Ge, X.; Li, R.; Li, S.; Chen, X.; Song, J.; Xie, J.; Chen, X.; Yang, H. A new class of NIR‐II gold nanocluster‐based protein biolabels for in vivo tumor‐targeted imaging. Angewandte Chemie International Edition 2021, 60 (3), 1306-1312. (8) Goswami, N.; Zheng, K.; Xie, J. Bio-NCs–the marriage of ultrasmall metal nanoclusters with biomolecules. Nanoscale 2014, 6 (22), 13328-13347. (9) Yuan, Q.; Wang, Y.; Zhao, L.; Liu, R.; Gao, F.; Gao, L.; Gao, X. Peptide protected gold clusters: chemical synthesis and biomedical applications. Nanoscale 2016, 8 (24), 12095-12104. (10) Ma, Q.; Liu, L.; Yang, Z.; Zheng, P. Facile Synthesis of Peptide-Conjugated Gold Nanoclusters with Different Lengths. Nanomaterials 2021, 11 (11), 2932. (11) Tan, Y. N.; Lee, J. Y.; Wang, D. I. Uncovering the design rules for peptide synthesis of metal nanoparticles. Journal of the American Chemical Society 2010, 132 (16), 5677-5686. (12) Luo, Z.; Zheng, K.; Xie, J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chemical Communications 2014, 50 (40), 5143-5155. (13) Xie, J.; Lee, J. Y.; Wang, D. I.; Ting, Y. P. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 2007, 1 (5), 429-439. (14) Li, L.; Xie, T.; Liu, Z.; Feng, H.; Wang, G. Activity enhancement of CotA laccase by hydrophilic engineering, histidine tag optimization and static culture. Protein Engineering, Design and Selection 2018, 31 (1), 1-5. (15) Li, S. Y.; Qiu, W. X.; Cheng, H.; Gao, F.; Cao, F. Y.; Zhang, X. Z. A Versatile Plasma Membrane Engineered Cell Vehicle for Contact‐Cell‐Enhanced Photodynamic Therapy. Advanced Functional Materials 2017, 27 (12), 1604916. (16) Li, Y.; Yuan, M.; Khan, A. J.; Wang, L.; Zhang, F. Peptide-gold nanocluster synthesis and intracellular Hg2+ sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 579, 123666. (17) Wang, X.; Wang, Y.; He, H.; Ma, X.; Chen, Q.; Zhang, S.; Ge, B.; Wang, S.; Nau, W. M.; Huang, F. Deep-red fluorescent gold nanoclusters for nucleoli staining: real-time monitoring of the nucleolar dynamics in reverse transformation of malignant cells. ACS Applied Materials & Interfaces 2017, 9 (21), 17799-17806. (18) Qu, F.; Wang, Z.; Li, C.; Jiang, D.; Zhao, X.-e. Peptide cleavage-mediated aggregation-enhanced emission from metal nanoclusters for detecting trypsin and screen its inhibitors from foods. Sensors and Actuators B: Chemical 2022, 359, 131610. (19) Madhu, M.; Tseng, W.-B.; Chou, Y.-S.; Krishna Kumar, A. S.; Lu, C.-Y.; Chang, P.-L.; Tseng, W.-L. Peptide-Directed Synthesis of Aggregation-Induced Emission Enhancement-Active Gold Nanoclusters for Single-and Two-Photon Imaging of Lysosome and Expressed αvβ3 Integrin Receptors. Analytical Chemistry 2024. (20) Bernkop-Schnürch, A.; Steininger, S. Synthesis and characterisation of mucoadhesive thiolated polymers. International Journal of Pharmaceutics 2000, 194 (2), 239-247. (21) Hanif, M.; Zaman, M.; Qureshi, S. Thiomers: a blessing to evaluating era of pharmaceuticals. International Journal of Polymer Science 2015, 2015 (1), 146329. (22) Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D. A.; Quiñones-Olvera, L. F. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Research International 2015, 2015 (1), 821279. (23) Hock, N.; Racaniello, G. F.; Aspinall, S.; Denora, N.; Khutoryanskiy, V. V.; Bernkop‐Schnürch, A. Thiolated nanoparticles for biomedical applications: mimicking the workhorses of our body. Advanced Science 2022, 9 (1), 2102451. (24) Puri, V.; Sharma, A.; Kumar, P.; Singh, I. Thiolation of biopolymers for developing drug delivery systems with enhanced mechanical and mucoadhesive properties: A review. Polymers 2020, 12 (8), 1803. (25) Cheng, Y.; Pham, A.-T.; Kato, T.; Lim, B.; Moreau, D.; López-Andarias, J.; Zong, L.; Sakai, N.; Matile, S. Inhibitors of thiol-mediated uptake. Chemical Science 2021, 12 (2), 626-631. (26) Summonte, S.; Racaniello, G. F.; Lopedota, A.; Denora, N.; Bernkop-Schnürch, A. Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. Journal of Controlled Release 2021, 330, 470-482. (27) Leichner, C.; Jelkmann, M.; Bernkop-Schnürch, A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Advanced Drug Delivery Reviews 2019, 151, 191-221. (28) Yeung, V.; Miller, D. D.; Rutzke, M. A. Atomic absorption spectroscopy, atomic emission spectroscopy, and inductively coupled plasma-mass spectrometry. Food Analysis 2017, 129-150. (29) Aceto, M. The use of ICP-MS in food traceability. In Advances in food traceability techniques and technologies, Elsevier, 2016; pp 137-164. (30) Ammann, A. A. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. Journal of Mass Spectrometry 2007, 42 (4), 419-427. (31) Chopra, T.; Sasan, S.; Devi, L.; Parkesh, R.; Kapoor, K. K. A comprehensive review on recent advances in copper sensors. Coordination Chemistry Reviews 2022, 470, 214704. (32) Yan, R.; Shou, Z.; Chen, J.; Wu, H.; Zhao, Y.; Qiu, L.; Jiang, P.; Mou, X.-Z.; Wang, J.; Li, Y.-Q. On–off–on gold nanocluster-based fluorescent probe for rapid Escherichia coli differentiation, detection and bactericide screening. ACS Sustainable Chemistry & Engineering 2018, 6 (4), 4504-4509. (33) Zhang, W. J.; Liu, S. G.; Han, L.; Luo, H. Q.; Li, N. B. A ratiometric fluorescent and colorimetric dual-signal sensing platform based on N-doped carbon dots for selective and sensitive detection of copper (II) and pyrophosphate ion. Sensors and Actuators B: Chemical 2019, 283, 215-221. (34) Huy, B. T.; Thangadurai, D. T.; Sharipov, M.; Nghia, N. N.; Van Cuong, N.; Lee, Y.-I. Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis-A mechanistic approach. Microchemical Journal 2022, 179, 107511. (35) Niu, H.; Liu, J.; O’Connor, H. M.; Gunnlaugsson, T.; James, T. D.; Zhang, H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chemical Society Reviews 2023, 52 (7), 2322-2357. (36) Gong, W.-J.; Nan, H.-R.; Peng, H.-B.; Wang, Y.-Q.; Dong, Z.-M.; Zhang, Z.-B.; Cao, X.-H.; Liu, Y.-H. A ratiometric fluorescent sensor for UO22+ detection based on Ag+-modified gold nanoclusters hybrid via photoinduced electron transfer (PET) mechanism. Microchemical Journal 2023, 190, 108725. (37) Xiu, L.-F.; Huang, K.-Y.; Zhu, C.-T.; Zhang, Q.; Peng, H.-P.; Xia, X.-H.; Chen, W.; Deng, H.-H. Rare-earth Eu3+/gold nanocluster ensemble-based fluorescent photoinduced electron transfer sensor for biomarker dipicolinic acid detection. Langmuir 2021, 37 (2), 949-956. (38) Bolanta, S. O.; Malijauskaite, S.; McGourty, K.; O’Reilly, E. J. Synthesis of Poly (acrylic acid)-Cysteine-Based Hydrogels with Highly Customizable Mechanical Properties for Advanced Cell Culture Applications. ACS Omega 2022, 7 (11), 9108-9117. (39) Duggan, S.; O’Donovan, O.; Owens, E.; Duggan, E.; Hughes, H.; Cummins, W. Comparison of the mucoadhesive properties of thiolated polyacrylic acid to thiolated polyallylamine. International Journal of Pharmaceutics 2016, 498 (1-2), 245-253. (40) Lin, Y.; Charchar, P.; Christofferson, A. J.; Thomas, M. R.; Todorova, N.; Mazo, M. M.; Chen, Q.; Doutch, J.; Richardson, R.; Yarovsky, I. Surface dynamics and ligand–core interactions of quantum sized photoluminescent gold nanoclusters. Journal of the American Chemical Society 2018, 140 (51), 18217-18226. (41) Wang, X.; Xia, J.; Wang, C.; Liu, L.; Zhu, S.; Feng, W.; Li, L. Preparation of novel fluorescent nanocomposites based on Au nanoclusters and their application in targeted detection of cancer cells. ACS Applied Materials & Interfaces 2017, 9 (51), 44856-44863. (42) Arkaban, H.; Barani, M.; Akbarizadeh, M. R.; Pal Singh Chauhan, N.; Jadoun, S.; Dehghani Soltani, M.; Zarrintaj, P. Polyacrylic acid nanoplatforms: Antimicrobial, tissue engineering, and cancer theranostic applications. Polymers 2022, 14 (6), 1259. (43) Suwandaratne, N.; Hu, J.; Siriwardana, K.; Gadogbe, M.; Zhang, D. Evaluation of Thiol Raman Activities and p K a Values Using Internally Referenced Raman-Based pH Titration. Analytical Chemistry 2016, 88 (7), 3624-3631. (44) Ulman, A.; Ioffe, M.; Patolsky, F.; Haas, E.; Reuvenov, D. Highly active engineered-enzyme oriented monolayers: formation, characterization and sensing applications. Journal of Nanobiotechnology 2011, 9, 1-10. (45) Ansar, S. M.; Fellows, B.; Mispireta, P.; Mefford, O. T.; Kitchens, C. L. pH triggered recovery and reuse of thiolated poly (acrylic acid) functionalized gold nanoparticles with applications in colloidal catalysis. Langmuir 2017, 33 (31), 7642-7648. (46) Bain, D.; Maity, S.; Paramanik, B.; Patra, A. Core-size dependent fluorescent gold nanoclusters and ultrasensitive detection of Pb2+ ion. ACS Sustainable Chemistry & Engineering 2018, 6 (2), 2334-2343. (47) Van Den Tillaart, S.; Busard, M.; Trimbos, J. The use of distilled water in the achievement of local hemostasis during surgery. Gynecological Surgery 2009, 6, 255-259. (48) Guaragnone, T.; Rossi, M.; Chelazzi, D.; Mastrangelo, R.; Severi, M.; Fratini, E.; Baglioni, P. pH-responsive semi-interpenetrated polymer networks of pHEMA/PAA for the capture of copper ions and corrosion removal. ACS Applied Materials & Interfaces 2022, 14 (5), 7471-7485. (49) Chen, T.; He, B.; Tao, J.; He, Y.; Deng, H.; Wang, X.; Zheng, Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Advanced Drug Delivery Reviews 2019, 143, 177-205. (50) Lee, J.; Naveen, M. H.; Park, J.; Pyo, K.; Kim, H.; Lee, D.; Bang, J. H. Small Change, Big Difference: Photoelectrochemical Behavior of Au Nanocluster-Sensitized TiO2 Altered by Core Restructuring. ACS Energy Letters 2021, 6 (6), 2305-2312. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2029-08-27 校外 Off-campus:開放下載的時間 available 2029-08-27 您的 IP(校外) 位址是 216.73.216.56 現在時間是 2025-06-01 論文校外開放下載的時間是 2029-08-27 Your IP address is 216.73.216.56 The current date is 2025-06-01 This thesis will be available to you on 2029-08-27. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2029-08-27 |
QR Code |