Responsive image
博碩士論文 etd-0727124-160558 詳細資訊
Title page for etd-0727124-160558
論文名稱
Title
使用外差自我注入鎖定技術推進生醫成像雷達至次太赫茲頻率
Advancing Biomedical Imaging Radar to Sub-THz Frequencies with Heterodyne Self-Injection-Locking Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-08-15
繳交日期
Date of Submission
2024-08-27
關鍵字
Keywords
自我注入鎖定雷達、合成孔徑雷達、多輸入多輸出、數位波束形成、調頻連續波、人體成像、生理訊號監測
Self-Injection Locking Radar, Synthetic Aperture Radar, Multiple-Input Multiple-Output, Digital Beamforming, Frequency-Modulated Continuous Wave, Human Imaging, Vital Sign Monitoring
統計
Statistics
本論文已被瀏覽 55 次,被下載 0
The thesis/dissertation has been browsed 55 times, has been downloaded 0 times.
中文摘要
本研究基於外差式自我注入鎖定(Heterodyne Self-Injection Locking, HSIL)技術結合能提供空間維度的雷達技術,並透過一系列的演算法如提供二維及三維的成像與目標物的定位,同時將操作頻率提升至次太赫茲頻段,更進一步提升系統的解析度,也因為次太赫茲的短波長特性使得系統的靈敏度更進一步的提升。透過HSIL雷達的高靈敏度特性,提取雷達在慢時間下所包含的都卜勒資訊。本文在合成孔徑雷達(SAR)中利用成像資訊定位出目標的位置,並提取目標位置的都卜勒資訊,而在分時多工多天線(TDM-MIMO)調頻連續波(FMCW)系統中則運用四維成像技術包括三維點雲圖對受測者進行定位與成像,然後提取其成像熱點的都卜勒資訊。
Abstract
This research is based on Heterodyne Self-Injection Locking (HSIL) technology combining radar technologies capable of providing spatial dimensions. By employing a series of algorithms, it offers two-dimensional and three-dimensional target imaging and positioning. The operating frequency is elevated to the sub-terahertz band, further enhancing the system's resolution. Additionally, the short wavelength characteristics of the sub-terahertz band significantly improve the system's sensitivity. Leveraging the high sensitivity of HSIL radar, the Doppler information embedded in radar data over slow time is extracted. In this study, Synthetic Aperture Radar (SAR) imaging information is used to locate targets and extract Doppler information from those target locations. In a Time-Division-Multiplexing Multiple-Input-Multiple-Output (TDM-MIMO) Frequency-Modulated Continuous Wave (FMCW) system, the four-dimensional imaging includes three-dimensional point clouds to position and image subjects, followed by extracting the Doppler information from their image hotspots.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 x
第一章 序論 1
1.1 研究背景與動機 1
1.2 都卜勒雷達發展回顧 2
1.2.1 具有距離資訊之都卜勒雷達 2
1.2.2 具有角度資訊之都卜勒雷達 5
1.3 自我注入鎖定雷達 7
1.4 章節規劃 8
第二章 合成孔徑調頻連續波雷達 10
2.1 系統架構 10
2.2 鏡像抑制 13
2.2.1 檢測理論 14
2.2.2 模擬結果 16
2.2.3 實驗結果 18
2.3 成像原理 21
2.4 實驗結果 29
2.4.1 單目標偵測 29
2.4.2 解析度測試 32
2.4.3 多目標偵測 34
第三章 分時多工多天線調頻連續波雷達 38
3.1 系統架構 38
3.1.1 射頻前端與IF端 39
3.1.2 控制訊號與數位訊號處理 40
3.2 天線陣列 41
3.3 成像原理 43
3.4 實驗結果 48
3.4.1 單目標偵測 48
3.4.2 解析度測試 51
3.4.3 多目標偵測 52
第四章 結論與未來展望 56
參考文獻 57
參考文獻 References
[1] M.-Z Poh, D. McDuff, and R. Picard, “Advancements in noncontact multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng., vol. 58, no. 1, pp. 7–11, Jan. 2011.
[2] M. Lewandowska, J. Rumiński, T. Kocejko, and J. Nowak, “Measuring pulse rate with a webcam — A non-contact method for evaluating cardiac activity,” in
Proc. Federated Conf. Comput. Sci. Inform. Syst., Szczecin, Poland, Sep. 2011,
pp. 504–410.
[3] G. de Haan and V. Jeanne, “Robust pulse rate from chrominance-based rPPG,”
IEEE Trans. Biomed. Eng., vol. 60, no. 10, pp. 2878–2886, Oct. 2013.
[4] P. Arlotto, M. Grimaldi, R. Naeck, and J.-M. Ginoux, “An ultrasonic contactless
sensor for breathing monitoring,” Sensors, vol. 14, no. 8, pp. 15371–15386, Aug.
2014.
[5] T. Wang et al., “Contactless respiration monitoring using ultrasound signal with
off-the-shelf audio devices,” IEEE Internet Things J., vol. 6, no. 2, pp.
2959–2973, Apr. 2019.
[6] A. Al-Naji, A. J. Al-Askery, S. K. Gharghan, and J. Chahl, “A system for
monitoring breathing activity using an ultrasonic radar detection with low power
consumption,” J. Sensor Actuator Netw., vol. 8, no. 2, p. 32, May 2019.
[7] M. Kebe, R. Gadhafi, B. Mohammad, M. Sanduleanu, H. Saleh, and M.
Al-Qutayri, “Human vital signs detection methods and potential using radars: A
review,” Sensors, vol. 20, no. 5, p. 1454, Mar. 2020.
[8] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent
advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE
Trans. Microw. Theory Techn., vol. 61, pp. 2046–2060, Apr. 2013.
[9] J. C. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE,
vol. 63, no. 10, pp. 1530–1530, Oct. 1975.
[10] J. C. Lin, J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, “Microwave
apexcardiography,” IEEE Trans. Microw. Theory Techn., vol. 27, no. 6, pp.
618–620, Jun. 1979.
[11] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. Kovacs,
“Range correlation and I/Q performance benefits in single-chip silicon Doppler
radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw.
Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[12] Y. Xiao, J. Lin, O. Boric-Lubecke, and M. Lubecke, “Frequency-tuning
technique for remote detection of heartbeat and respiration using low-power
double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory
Techn., vol. 54, no. 5, pp. 2023–2032, May 2006.
[13] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity
software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for
noncontact vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 58, no.
5, pp. 1410–1419, May 2010.
[14] G. Vinci et al., “Six-port radar sensor for remote respiration rate and heartbeat
vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp.
2093–2100, May 2013.
[15] C. Gu, “Short-range noncontact sensors for healthcare and other emerging
applications: A review,” Sensors, vol. 16, no. 8, p. 1169, Aug. 2016.
[16] C. Li, Z. Peng, T.-Y. Huang, T. Fan, F.-K. Wang, T.-S. Horng, J.-M.
Muñoz-Ferreras, R. Gómez-García, L. Ren, and J. Lin, “A review on recent
progress of portable short-range noncontact microwave radar systems,” IEEE
Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692–1706, May. 2017.
[17] J. Wang, T. Karp, J. -M. Muñoz-Ferreras, R. Gómez-García, and C. Li, “A
spectrum-efficient FSK radar technology for range tracking of both moving and
stationary human subjects,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 12,
pp. 5406–5416, Dec. 2019.
[18] Y. S. Koo, L. Ren, Y. Wang, and A. E. Fathy, “UWB MicroDoppler Radar for human Gait analysis, tracking more than one person, and vital sign detection of moving persons,” in Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International, Jun. 2013, pp. 1–4.
[19] G. Wang, J. M. Munoz-Ferreras, C. Gu, C. Li, and R. Gomez-Garcia, “Linear-frequency-modulated continuous-wave radar for vital-sign monitoring,” in Proc. IEEE Biomed. Wireless Technol., Networks, Sens. Syst. Top. Conf., Newport Beach, CA, USA, Jan. 2014, pp. 1–3.
[20] G. Wang, J.-M. Muñoz-Ferreras, C. Gu, C. Li, and R. Gómez-García,
“Application of linear-frequency-modulated continuous-wave (LFMCW) radars
for tracking of vital signs,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 6,
pp. 1387–1399, Jun. 2014.
[21] M. Nosrati, S. Shahsavari, S. Lee, H. Wang, and N. Tavassolian, “A concurrent
dual-beam phased-array Doppler radar using MIMO beamforming techniques for
short-range vital-signs monitoring,” IEEE Trans. Antennas Propag., vol. 67, no.
4, pp. 2390–2404, Apr. 2019.
[22] S. H. Talisa, K. W. O’Haver, T. M. Comberiate, M. D. Sharp, and O. F.
Somerlock, “Benefits of digital phased array radars,” Proc. IEEE, vol. 104, no. 3,
pp. 530–543, Mar. 2016.
[23] Donald R. Wehner, High-Resolution Radar, 2nd ed. Norwood MA, USA: Artech House, 1994.
[24] Caner Ö zdemii̇r, Inverse Synthetic Aperture Radar imaging with MATLAB algorithms, Hoboken, NJ, USA: Wiley, 2012.
[25] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked
oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[26] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946
[27] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131-2139, Aug. 2011.
[28] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011.
[29] F.-K. Wang, Y.-R. Chou, Y.-C. Chiu and T.-S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar”, IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931-2940, Dec. 2015.
[30] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propagat., vol. 34, no. 3, pp. 276–280, Mar. 1986.
[31] J. Jung, S. Lim, S.-C. Kim, and S. Lee, ``Solving Doppler-angle ambiguity
of BPSK-MIMO FMCW radar system,'' IEEE Access, vol. 9,
pp. 120347_120357, 2021.
[31] J.-H. Park, Y.-J. Yoon, J. Jung and S.-C. Kim, "Novel multiplexing scheme for resolving the velocity ambiguity problem in MIMO FMCW radar using MPSK code", IEEE Access, vol. 10, pp. 75234-75244, 2022.
[32] J. Jung, S. Lim, S.-C. Kim, and S. Lee, ``Solving Doppler-angle ambiguity
of BPSK-MIMO FMCW radar system,'' IEEE Access, vol. 9,
pp. 120347_120357, 2021.
[33] M. Harter, A. Ziroff, and T. Zwick, “Three-dimensional radar imaging by digital
beamforming,” in Proc. Eur. Radar Conf., Manchester, UK, Oct. 2011, pp.
17–20.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2034-08-27
校外 Off-campus:開放下載的時間 available 2034-08-27

您的 IP(校外) 位址是 18.188.205.95
現在時間是 2024-11-22
論文校外開放下載的時間是 2034-08-27

Your IP address is 18.188.205.95
The current date is 2024-11-22
This thesis will be available to you on 2034-08-27.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2029-08-27

QR Code