論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2034-08-27
校外 Off-campus:開放下載的時間 available 2034-08-27
論文名稱 Title |
頻率與自我注入鎖定雷達及其生理感測應用 Frequency- and Self-Injection-Locked Radar for Vital Sign Sensing |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
77 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-08-15 |
繳交日期 Date of Submission |
2024-08-27 |
關鍵字 Keywords |
自我注入鎖定雷達、鎖頻迴路、生理感測、雜波消除、雷達性能優化 Self-Injection-Locked (SIL) radar, frequency-locked loop, vital sign sensing, clutter elimination, radar performance optimization |
||
統計 Statistics |
本論文已被瀏覽 46 次,被下載 0 次 The thesis/dissertation has been browsed 46 times, has been downloaded 0 times. |
中文摘要 |
本論文探討結合自我注入鎖定(SIL)迴路與鎖頻迴路(FLL)而成為頻率與自我注入鎖定(FSIL)雷達,並在先前提出的FSIL雷達架構基礎上進行實驗驗證。為了進一步提升雷達性能,本論文提出一種新的FSIL雷達。理論推導結果顯示,通過改變注入相位,可以在保持優良感測靈敏度下縮減操作頻寬,並已經過實驗驗證。 此外,參考先前使用相移器消除環境中雜波的方法,本論文證明所提出的FSIL雷達具備雜波抑制能力。最後,針對人體的生理感測進行實驗,不論在有無雜波的情況下,雷達均能保持良好的相位追蹤能力。文末,將SIL、FLL、FSIL與OPTSIL雷達四種架構與本論文提出的FSIL雷達進行性能比對,結果顯示,本論文提出的FSIL雷達架構在性能上優於其他系統。 |
Abstract |
This thesis explores the combination of a Self-Injection-Locked (SIL) loop and a Frequency-Locked Loop (FLL) into a Frequency- and Self-Injection-Locked (FSIL) radar. Experimental validation was conducted based on the previously studied FSIL radar architecture. To further enhance radar performance, this thesis proposes a new FSIL radar. Theoretical derivation shows that by adjusting the injection phase, the operation bandwidth can be reduced while maintaining sensing sensitivity. These theoretical predictions have been experimentally validated. Additionally, by referencing the previous method of using a phase shifter to eliminate environmental clutter, this thesis demonstrates that the proposed FSIL radar has clutter suppression capability. Finally, experiments on vital sign sensing of the human body were conducted. Regardless of the presence of clutter, the radar maintained good phase-tracking capability. At the end of the thesis, the performance of four radar architectures—SIL, FLL, FSIL, and OPTSIL—was compared with that of the proposed FSIL radar. The comparison shows that the radar system presented in this thesis outperforms other SIL/FLL-based systems in terms of performance. |
目次 Table of Contents |
論文審定書i 誌謝ii 摘要iv Abstractv 目錄vi 圖次viii 表次xi 第一章 序論1 1-1 研究背景與動機1 1-2 生理雷達發展回顧3 1-3 章節規劃6 第二章 系統原理與測試8 2-1自我注入鎖定雷達以及鎖頻迴路雷達8 2-1-1自我注入鎖定雷達分析8 2-1-2鎖頻迴路雷達分析13 2-2 鎖頻及自我注入鎖定雷達架構與分析17 2-2-1 時域分析18 2-2-2 頻域分析19 2-2-3 訊雜比分析20 2-3 鎖頻及自我注入鎖定雷達性能測試22 2-3-1測試設置22 2-3-2 雷達性能測試25 第三章 雷達系統優化與實驗29 3-1 雷達系統優化與分析29 3-1-1 時域分析29 3-1-2 頻域分析31 3-1-3 訊雜比分析32 3-2 雷達系統優化實驗34 3-2-1性能優化量測分析34 3-2-2雜波干擾抑制技術分析與量測48 3-3 生理感測應用51 3-3-1 感測實驗51 3-2-2 性能比較58 第四章 結論與未來展望61 參考文獻62 圖 1.1 血氧儀[12]2 圖 1. 2光學感測器[13]2 圖 1.3傳統連續波雷達架構[12]4 圖 1.4 SIL雷達架構5 圖 1.5正交自我注入鎖定雷達[19]5 圖 1.6 頻率與自我注入鎖定雷達6 圖 2.1注入情況下的振盪器之等效模型[17]9 圖 2.2注入鎖定振盪器之訊號向量分析圖[12]9 圖 2.3 SIL雷達線性模型[11]13 圖 2.4 FLL架構[24]14 圖 2.5 FLL雷達系統架構[6]14 圖 2.6 FLL雷達之訊號與雜訊模型16 圖 2.7 FSIL雷達架構18 圖 2.8 FSIL雷達頻域分析模型19 圖 2.9 FSIL雷達相位雜訊分析模型20 圖 2.10 FSIL 雷達實體22 圖 2.11 (a) 振盪器架構圖 (b)振盪器實體圖[24]23 圖 2.12 迴路濾波器(a)架構圖(b)成品[24]24 圖 2.13 FSIL雷達實驗設置圖25 圖 2.14 SIL雷達在感測距離為1 m時之頻率調制頻寬測量26 圖 2.15 FSIL雷達在感測距離為1 m時之頻率調制頻寬測量27 圖 3.1 經並行的FSIL雷達系統架構圖29 圖 3.2 並行的FSIL雷達之頻域分析線性圖31 圖 3.3 並行的FSIL雷達相位雜訊模型32 圖 3.4 並行的FSIL雷達系統實體圖34 圖 3.5 並行的FSIL雷達實驗設置35 圖 3.6 相位追蹤實驗流程圖(a)擺幅5 mm (b)擺幅1 mm36 圖 3.7 FLL迴路頻寬>SIL迴路頻寬,金屬板週期性擺幅1 mm,SIL迴路注入(a) 0度(b) 180度時量測所得之並行的FSIL雷達頻率調制頻寬。SIL迴路注入(c) 0度(d) 180度時FSIL雷達之相位追蹤能力測試。38 圖 3.8 FLL迴路頻寬>SIL迴路頻寬,金屬板週期性擺幅5 mm,SIL迴路注入(a) 0度(b) 180度時量測所得之並行的FSIL雷達頻率調制頻寬。SIL迴路注入(c) 0度(d) 180度時FSIL雷達之相位追蹤能力測試。39 圖 3.9 FLL迴路頻寬<SIL迴路頻寬,金屬板週期性擺幅1 mm,SIL迴路注入(a) 0度(b) 180度時量測所得之並行的FSIL雷達頻率調制頻寬。SIL迴路注入(c) 0度(d) 180度時FSIL雷達之相位追蹤能力測試。41 圖 3.10 FLL迴路頻寬<SIL迴路頻寬,金屬板週期性擺幅5 mm,SIL迴路注入(a) 0度(b) 180度時量測所得之並行的FSIL雷達頻率調制頻寬。SIL迴路注入(c) 0度(d) 180度時FSIL雷達之相位追蹤能力測試。42 圖 3.11 金屬板擺幅1 mm且擺動頻率為5 Hz之條件下被並行的FSIL雷達所測得之基頻訊號44 圖 3.12金屬板擺幅0.1 mm且擺動頻率為1.2 Hz之條件下被並行的FSIL雷達所測得之基頻訊號44 圖 3.13金屬板擺幅31.25 mm且擺動頻率為1.2 Hz之條件下被並行的FSIL雷達所測得之基頻訊號45 圖 3.14並行的FSIL雷達偵測在1.5 m處擺幅為1 cm金屬板時之頻率調制頻寬46 圖 3.15並行的FSIL雷達偵測在3 m處擺幅為1 cm金屬板時之頻率調制頻寬46 圖 3.16並行的FSIL雷達在距離金屬板3 m處之相位追蹤能力測試47 圖 3.17並行的FSIL雷達雜波消除架構圖48 圖 3.18雜波消除機制流程圖49 圖 3.19並行的FSIL雷達雜波消除實驗設置49 圖 3.20並行的FSIL雷達在無雜波情況下之相位追蹤效果50 圖 3.21 並行的FSIL雷達在有雜波情況下之相位追蹤效果50 圖 3.22 並行的FSIL雷達經相移器調整輸出頻率後之相位追蹤效果51 圖 3.23 並行的FSIL雷達進行生理感測實驗設置52 圖 3.24並行的FSIL雷達在距離人體1.5 m處量測生理訊號53 圖 3.25並行的FSIL雷達在有雜波之情況下感測生理訊號場景54 圖 3.26並行的FSIL雷達在距離人體1.5 m處且無強雜波情況下量測生理訊號55 圖 3.27並行的FSIL雷達在距離人體1.5 m處且有強雜波情況下量測生理訊號56 圖 3.28並行的FSIL雷達在距離人體1.5 m處且消除雜波情況下量測生理訊號57 圖 3.29 OPTSIL雷達架構[28]58 表 2.1注入鎖定振盪器之訊號向量分析符號定義9 表 2.2 SIL理論分析之參數定義。11 表 2.3 被動與主動濾波器之相位誤差函數 [24]17 表 2.4 振盪器性能規格表23 表 2.5 迴路濾波器元件值24 表 2.6 商用元件規格表24 表 2.7 理論與實驗比對表28 表 3.1 組合A_擺幅1 mm頻寬與基頻訊號變化量39 表 3.2 組合A_擺幅5 mm頻寬與基頻訊號變化量39 表 3.2 組合A之理論與實驗誤差40 表 3.4 組合B_擺幅1 mm頻寬與基頻訊號變化量42 表 3.5 組合B_擺幅5 mm頻寬與基頻訊號變化量43 表 3.6 組合B_理論與實驗誤差43 表 3.7 生理訊號量測數據53 表 3.8 並行的FSIL雷達生理訊號感測之精確率53 表 3.9在無雜波情況下並行的FSIL雷達量測生理訊號分析55 表 3.10在有雜波情況下並行的FSIL雷達量測生理訊號分析56 表 3.11在消除雜波情況下並行的FSIL雷達量測生理訊號分析57 表 3.12 SIL以及FLL相關雷達架構性能比較59 |
參考文獻 References |
[1] K.-C. Peng, M.-C. Sung, F.-K. Wang, and T.-S. Horng, ‘’Noncontact vital sign sensing under nonperiodic body movement using a novel frequency-locked-loop radar” IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 4762–4773, Aug. 2021. [2] Z. Ling, W. Zhou, Y. Ren, J. Wang, And L Guo, “Non-contact heart rate monitoring based on millimeter wave radar” IEEE Access., vol. 10, pp. 74033-74044, Jul. 2022 [3] W. Kang, S. Qian, Z. Sang, and W. Wu, “Investigation of stepped-frequency hybrid modulation radar for respiration monitoring, 2-D localization, and moving target tracking” IEEE Trans. Microw. Theory Techn., vol.70, no. 7, pp. 3700-3712, May. 2022. [4] Z. Peng, L. Ran, and C. Li, “A K-band portable FMCW radar with beamforming array for short-range localization and vital-Doppler targets discrimination,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3443–3452, Sep. 2017. [5] F.-K. Wang, P.-H. Juan, D.-M. Chian, and C.-K. Wen, “Multiple range and vital sign detection based on single-conversion self-injection-locked hybrid mode radar with a novel frequency estimation algorithm,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1908–1920, May 2020 [6] K. Han and S. Hong, “MIMO differential radar using null point beams for vital sign detection in the presence of body motions,” in Proc. 19th Eur. Radar Conf. (EuRAD), Sep. 2022, pp. 177–180. [7] Q. Lele, L. Shujie, G. Wenwen, M. Shuang, and Y. Tianhong, “Vital sign detection using multichannel fmcw radar,” in Proc. CIE Int. Conf. Radar, pp. 3027–3030, 2021. [8] F. Ayaz, M. S. Khan, S. Hussain, W. Ahmad, F. Kawsar, M. A. Imran, and A. Zoha, “Contact-free vital sign estimation using ultra-wide band radar,” in Proc. 29th IEEE ICECS, 2022, pp.1–4. [9] F. Zhu et al., “Doppler radar techniques for vital signs detection featuring noise cancellation,” in Proc. IEEE/MTT-S Int. Microw. Biomed. Conf., 2019, pp. 1–4. [10] J.-M. Munoz-Ferreras, Z. Peng, R. Gomez-Garcia and C. Li, “Random body movement mitigation for FMCW-radar-based vital-sign monitoring,” in Proc. 2016 IEEE Topic. Conf. on BioWireleSS, 2016, pp. 22-24. [11] Y. Li, Q. Wu, Z. Tian, J. Wang, C. Liu, R, Qi, S, Li, and X. Li, “An X-band multifrequency difference frequency-shift keying CMOS radar for range tracking and AI-based human gesture recognition,” IEEE Sensors J., vol. 23, no.11, pp.11600-11614, Apr. 2023. [12] 傅宇廷,運用鎖頻迴路追蹤相位之自我注入鎖定生理雷達,國立中山大學電機工程學系碩士論文,2021。 [13] 台灣醫療科技展[Online] Available:https://expo.taiwan-healthcare.org/zh/news_detail.php?REFDOCID=0qeza40y31v6dpgt [14] X. Shang, J. Liu, and J. Li, “Multiple object localization and vital sign monitoring using IR-UWB MIMO radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 6, pp. 4437–4450, Dec. 2020. [15] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013. [16] M. S. Hossain, S. D. Uddin, and S. M. M. Islam. “Heart Rate Variability Assessment Using Single Channel CW Doppler Radar” in Proc. IEEE MAPCON, 2023, pp. 1-6. [17] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [18] M. Ponton and A. Suarez, “Analysis of self-injection locked oscillators for motion sensing applications,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2016, pp. 1–4. [19] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods,” IEEE Sensors J., vol. 19, no. 5, pp. 1905–1916, Mar. 2019. [20] F.-K. Wang, and J.-X. Zhong, “Self-injection-locked (SIL) radars using frequency modulation (FM) techniques for concurrent range and vital sign monitoring,” in Proc. IEEE MTT-S IMBioC, June 2022, pp. 54-56. [21] H.-Y. Chang, C.-C. Chan, I. Yi-En Shen, Y.-L. Yeh, and S.-Y. Huang, “Design and analysis of CMOS low-phase-noise low-jitter subharmonically injection-locked VCO with FLL self-alignment technique,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4632 - 4645, Dec.2016. [22] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Phase- and self-injection-locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685–695, Jan. 2013 [23] L. Zhang, A. Daryoush, A. Poddar and U. Rohde, “Oscillator phase noise reduction using self-injection locked and phase locked loop (SILPLL),” in Proc. 2014 IEEE Intern. FCS, 2014, pp. 1-4. [24]傅積鴻,兩種運用鎖頻迴路之自我注入鎖定生理雷達,國立中山大學電機工程學系碩士論文,2022。 [25] K.-C. Peng, M.-C. Sung, F.-K. Wang, and T.-S. Horng, “A wireless-frequency-locked-loop-based vital sign sensor with quadrature tracking and phase-noise reduction capability,” IEEE sensors J., vol. 21, no. 8, Apr. 15, 2021 [26] H. Reggad, X. Jiang , R. Amirtharajah, D. Matthews, and X. Liu,“A single-chip single-antenna radar for remote vital sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 71, issue: 10, pp. 4519–4532, Oct. 2023 [27] J. Gustrau, F. Fiechtner, M. Hoffmann, “VCO linearisation by frequency feedback,” in 1998 IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Digest, Jun. 1998, pp. 135-138. [28] D. Tang, D. V. Q. Rodrigues, M. C. Brown, and C. Li, “Dual null detection points removal and time-domain sensitivity analysis of a self-injection-locked radar for small-amplitude motion sensing,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 9, pp. 4263–4272, Sep. 2022. [29]蔡易恩,用於穿牆生命偵測之最佳相位追蹤自我注入鎖定雷達,國立中山大學電機工程學系碩士論文,2023。 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2034-08-27 校外 Off-campus:開放下載的時間 available 2034-08-27 您的 IP(校外) 位址是 18.226.248.88 現在時間是 2024-11-22 論文校外開放下載的時間是 2034-08-27 Your IP address is 18.226.248.88 The current date is 2024-11-22 This thesis will be available to you on 2034-08-27. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2029-08-27 |
QR Code |