論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2029-08-27
校外 Off-campus:開放下載的時間 available 2029-08-27
論文名稱 Title |
基於延遲與自我注入鎖定技術之數位低中頻毫米波生命體徵雷達 Digital Low-IF Millimeter-Wave Vital Sign Radar Using Delay- and Self-Injection-Locking Technology |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
70 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-08-15 |
繳交日期 Date of Submission |
2024-08-27 |
關鍵字 Keywords |
自我注入鎖定雷達、低中頻都卜勒雷達、集合經驗模態分解法、心率變異性、Bland-Altman圖、雜波抵消、生理訊號量測 Self-Injection-Locked Radar, Low-IF Doppler Radar, EEMD, HRV, Bland-Altman Plot, Clutter Cancellation, Vital sign sensing |
||
統計 Statistics |
本論文已被瀏覽 141 次,被下載 0 次 The thesis/dissertation has been browsed 141 times, has been downloaded 0 times. |
中文摘要 |
本論文提出了一個使用延遲與自我注入鎖定 (Delay- and Self-Injection-Locked, DSIL) 技術的數位低中頻毫米波生命體徵雷達,旨在提升射頻前端模組的頻段至毫米波頻段,並驗證其功能性。利用數位延遲電路 (Digital Delay Line) 與比例積分控制器 (Proportional-Integral Controller, PI Controller) 即時補償人體位移所造成的相位偏移,使自我注入鎖定迴路的相位保持在最佳感測點。此技術有效解決了雷達的零點問題,顯著提升了雷達的擺幅靈敏度與線性度。 在實驗中,此雷達系統的線性度在金屬板等速移動下的擺幅靈敏度可達到20μm,在量測固定位置金屬板的擺幅靈敏度可以達到理論的極限值3.16μm。此外,雷達系統整合鏡像拒絕電路與雜波抵消電路,並以數位電路實現在現場可程式化邏輯閘陣列 (Field Programmable Gate Array, FPGA) 內,有效提升了鏡像拒絕效能。 訊號處理結合集合經驗模態分解方法 (Ensemble Empirical Mode Decomposition, EEMD) 還原心臟訊號波形,並利用峰值檢測提取心跳間隔 (interbeat interval, IBI) 進行心率變異性 (Heart Rate Variability, HRV) 分析,與參考的ECG訊號進行比較。實驗結果顯示,Bland-Altman圖表明兩種測量方式之間具有良好一致性。時域指標分析顯示心率整體可變性和短期變化高度相關,頻域指標分析清楚顯示靜態下的自主神經系統狀態及外部刺激下的反應動態。 本研究證明了此雷達系統在生理訊號量測的卓越性能,為未來在醫療監測與人體生理參數測量中的應用提供了重要技術基礎。 |
Abstract |
This thesis proposes a digital low-IF millimeter-wave vital sign radar using Delay- and Self-Injection-Locked (DSIL) technology, aiming to elevate the frequency band of the RF front-end module to the millimeter-wave range and verify its functionality. By utilizing a digital delay circuits and a proportional-integral (PI) controllers, it compensates for the phase shift caused by human movement in real-time, maintaining the phase of the self-injection locked (SIL) loop at the optimal sensing point. This technology effectively solves the radar's null-point problem and significantly enhances the radar's amplitude sensitivity and linearity. In experiments, the linearity of this radar system achieves a vibration sensitivity of 20 μm for a constant-velocity moving metal plate. The vibration sensitivity for measuring a metal plate at a fixed position can reach the theoretical limit of 3.16μm. Additionally, the radar system integrates image rejection and clutter cancellation circuits, implemented digitally on a field-programmable gate array (FPGA), effectively enhancing the radar's image rejection performance. The subsequent signal processing combines the Ensemble Empirical Mode Decomposition (EEMD) method to restore the cardiac signal waveform and uses peak detection to extract the interbeat interval (IBI) for heart rate variability (HRV) analysis, compared with the reference ECG signal. Experimental results show that the Bland-Altman plot indicates good consistency between the two measurement methods. Time-domain indicators analysis reveals a high correlation between overall heart rate variability and short-term changes, while frequency-domain indicators analysis clearly shows the autonomic nervous system state in a static condition and provides insights into the dynamic changes in response to stress or other external stimuli. This study demonstrates the excellent performance of this radar system in vital signal measurement, providing a crucial technological foundation for future applications in medical monitoring and human physiological parameter measurement. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 ix 第一章 緒論 1 1-1 研究背景與動機 1 1-2 都卜勒雷達介紹 2 1-3 自我注入鎖定雷達介紹 5 1-4 章節規劃 8 第二章 系統架構與原理 9 2-1 毫米波射頻前端與雷達系統實現 9 2-2 DSIL數位低中頻雷達 11 2-3 訊號處理 15 2-3-1 MATLAB訊號處理流程 15 2-3-1-1集合經驗模態分解 (EEMD) 方法 15 2-3-1-2 自相關方法 18 2-3-2根據時域和頻域的心率變異性 (HRV) 指標 21 2-3-2-1時域指標 22 2-3-2-2頻域指標 23 2-3-3 Bland-Altman圖 25 第三章 感測實驗與結果 28 3-1移動金屬板偵測實驗 28 3-1-1雜波消除效果量測 28 3-1-2靈敏度量測 33 3-1-3線性度量測 34 3-1-4與先前研究[37][56]的性能比較 38 3-2人體生理感測實驗 38 3-2-1生理訊號量測 39 3-2-2緩慢移動下生理訊號量測 42 3-2-3與先前研究[14] [47]的結果比較 46 第四章 結論與未來展望 52 參考文獻 53 |
參考文獻 References |
[1] A. T. Mazzeo et al., "Heart rate variability: a diagnostic and prognostic tool in anesthesia and intensive care," Acta Anaesthesiologica Scandinavica, vol. 55, no. 7, pp. 797-811, 2011. [2] J. A. Chalmers et al., "Anxiety disorders are associated with reduced heart rate variability: a meta-analysis," Frontiers in Psychiatry, vol. 5, p. 80, 2014. [3] J. Morales et al., "Use of heart rate variability in monitoring stress and recovery in judo athletes," J. Strength Cond. Res., vol. 28, no. 7, pp. 1896-1905, 2014. [4] Y. Han et al., "UWB radar for non-contact heart rate variability monitoring and mental state classification," in Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 2019. [5] S. Suzuki et al., "A novel autonomic activation measurement method for stress monitoring: non-contact measurement of heart rate variability using a compact microwave radar," Med. Biol. Eng. Comput., vol. 46, pp. 709-714, 2008. [6] J. A. Healey and R. W. Picard, "Detecting stress during real-world driving tasks using physiological sensors," IEEE Trans. Intell. Transp. Syst., vol. 6, no. 2, pp. 156-166, June 2005. [7] M. Zhao, F. Adib, and D. Katabi, "Emotion recognition using wireless signals," in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw., 2016. [8] P. Wang, Y. Kim, L. H. Ling, and C. B. Soh, "First heart sound detection for phonocardiogram segmentation," in Proc. 2005 IEEE Eng. Med. Biol. 27th Annu. Conf., Shanghai, China, 2005, pp. 5519-5522. [9] J. Allen, "Photoplethysmography and its application in clinical physiological measurement," Physiol. Meas., vol. 28, no. 3, p. R1, 2007. [10] V. K. Tallury and N. P. DePasquale, "Ultrasound cardiography in the diagnosis of left atrial thrombus," Chest, vol. 59, no. 5, pp. 501-503, 1971. [11] U. Satija, B. Ramkumar, and M. S. Manikandan, "Automated ECG noise detection and classification system for unsupervised healthcare monitoring," IEEE J. Biomed. Health Inform., vol. 22, no. 3, pp. 722-732, May 2018. [12] C. Yancy and W. T. Abraham, "Noninvasive hemodynamic monitoring in heart failure: Utilization of impedance cardiography," Congest. Heart Fail., vol. 9, no. 5, pp. 241-250, 2003. [13] W. Lv, Y. Zhao, W. Zhang, W. Liu, A. Hu, and J. Miao, "Remote measurement of short-term heart rate with narrow beam millimeter wave radar," IEEE Access, vol. 9, pp. 165049-165058, 2021. [14] R. A. I. Asyari, K.-Y. Lee, R. E. Arif, D. Teichmann, and T.-S. Horng, "Flexible metasurface lens for vital sign at 5.8 GHz self-injection locked radar," in Proc. 2023 Asia-Pacific Microwave Conf. (APMC), Taipei, Taiwan, 2023, pp. 43-45. [15] G. Zhao, Q. Liang, and T. S. Durrani, "An EMD based sense-through-foliage target detection UWB radar sensor networks," IEEE Access, vol. 6, pp. 29254-29261, 2018. [16] Z. Wu and N. E. Huang, "Ensemble empirical mode decomposition: a noise-assisted data analysis method," Adv. Adapt. Data Anal., vol. 1, no. 1, pp. 1-41, 2009. [17] R. E. Arif, W.-C. Su, and T.-S. Horng, "Chest-worn heart rate variability monitor with a self-injection-locked oscillator tag," IEEE Trans. Microw. Theory Techn., vol. 70, no. 5, pp. 2851-2860, May 2022. [18] R. E. Arif, W.-C. Su, and T.-S. Horng, "A wearable oscillator tag for heart health monitoring," in Proc. 2022 IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), Busan, Korea, 2022, pp. 207-209. [19] F.-K. Wang, J.-X. Zhong, and J.-Y. Shih, "IQ signal demodulation for noncontact vital sign monitoring using a CW Doppler radar: A review," IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 6, no. 4, pp. 449-460, Dec. 2022. [20] H. Wang, H. Afzal, and O. Momeni, "A highly accurate and sensitive mmWave displacement-sensing Doppler radar with a quadrature-less edge-driven phase demodulator," IEEE J. Solid-State Circuits, vol. 58, no. 9, pp. 2451-2465, Sept. 2023. [21] B. Razavi, RF Microelectronics, Upper Saddle River, NJ, USA: Prentice-Hall, 2011. [22] B. Razavi, "Design considerations for direct-conversion receivers," IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 44, no. 6, pp. 428-435, June 1997. [23] C. Gu et al., "Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy," IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3117-3123, Nov. 2012. [24] H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers: a simple physical model," IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000. [25] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, "Instrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture," IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1580-1588, Jun. 2010. [26] F. Tong, J. Liu, C. Li, C. Gu, and J. Mao, "A low-IF Doppler radar with asynchronous bandpass sampling for accurate measurement of displacement motions," IEEE Trans. Microw. Theory Tech., vol. 71, no. 1, pp. 456-465, Jan. 2023. [27] T.-S. Horng, "Self-injection-locked radar: An advance in continuous-wave technology for emerging radar systems," in Proc. 2013 Asia-Pacific Microwave Conf. (APMC), Seoul, South Korea, 2013, pp. 566-569. [28] P.-H. Juan, K.-H. Chen, and F.-K. Wang, "Frequency-offset self-injection-locked (FOSIL) radar for noncontact vital sign monitoring," in Proc. 2020 IEEE/MTT-S Int. Microw. Symp. (IMS), Los Angeles, CA, USA, 2020, pp. 643-646. [29] F.-K. Wang and J.-X. Zhong, "Self-injection-locked (SIL) radars using frequency modulation (FM) techniques for concurrent range and vital sign monitoring," in Proc. 2022 IEEE MTT-S Int. Microw. Biomed. Conf. (IMBioC), Suzhou, China, 2022, pp. 54-56. [30] D. Tang, D. V. Q. Rodrigues, M. C. Brown, and C. Li, "Dual null detection points removal and time-domain sensitivity analysis of a self-injection-locked radar for small-amplitude motion sensing," IEEE Trans. Microw. Theory Tech., vol. 70, no. 9, pp. 4263-4272, Sept. 2022. [31] F.-K. Wang et al., "A novel vital-sign sensor based on a self-injection-locked oscillator," IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [32] W.-C. Su, M.-C. Tang, R. El Arif, T.-S. Horng, and F.-K. Wang, "Single conversion stepped-frequency continuous-wave radar using self-injection-locking technology," in Proc. 2019 IEEE MTT-S Int. Microw. Symp. (IMS), Boston, MA, USA, 2019, pp. 420-423. [33] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang, and T.-S. Horng, "Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods," IEEE Sensors J., vol. 19, no. 5, pp. 1905-1916, Mar. 1, 2019. [34] K.-C. Peng, M.-C. Sung, F.-K. Wang, and T.-S. Horng, "Noncontact vital sign sensing under nonperiodic body movement using a novel frequency-locked-loop radar," IEEE Trans. Microw. Theory Tech., vol. 69, no. 11, pp. 4762-4773, Nov. 2021. [35] M.-C. Tang, C.-Y. Kuo, D.-C. Wun, F.-K. Wang, and T.-S. Horng, "A self- and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation," IEEE Trans. Microw. Theory Tech., vol. 64, no. 12, pp. 4812-4822, Dec. 2016. [36] M.-C. Tang, F.-K. Wang, and T.-S. Horng, "Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation," IEEE Trans. Microw. Theory Tech., vol. 65, no. 12, pp. 5324-5333, Dec. 2017. [37] W.-C. Su, C.-H. Chang, Y.-Y. Wu, T.-S. Horng, and S.-H. Yu, "Low-IF Doppler radar using delay- and self-injection-locking technology with clutter cancellation for biomedical monitoring," in Proc. 2023 IEEE/MTT-S Int. Microw. Symp. (IMS), San Diego, CA, USA, 2023, pp. 863-866. [38] 吳易陽。「使用延遲與自我注入鎖定技術之低中頻都卜勒雷達」。碩士論文,國立中山大學電機工程學系研究所,2023。 [39] S.-H. Yu and T.-S. Horng, "Highly linear phase-canceling self-injection-locked ultrasonic radar for non-contact monitoring of respiration and heartbeat," IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 1, pp. 75-90, Feb. 2020. [40] R. Adler, "A study of locking phenomena in oscillators," Proc. IRE, vol. 34, no. 6, pp. 351-357, June 1946. [41] L. J. Paciorek, "Injection locking of oscillators," Proc. IEEE, vol. 53, no. 11, pp. 1723-1727, Nov. 1965. [42] P. S. Feng and J. Jiuchao, "Extraction algorithm of vital signals based on empirical mode decomposition," J. South China Univ. Technol. Sci. Ed., vol. 38, no. 10, pp. 1-6, 2010. [43] L. Jiang, H. Wei, S. Guan, and L. Che, "A study on UWB vital signal detection method based on EEMD and HOC," Mod. Radar, vol. 37, no. 5, pp. 25-30, 2015. [44] X. Hu and T. Jin, "Short-range vital signs sensing based on EEMD and CWT using IR-UWB radar," Sensors, vol. 16, no. 12, pp. 2025-2042, 2016. [45] J. Yan, H. Hong, H. Zhao, Y. Li, C. Gu, and X. Zhu, "Through-wall multiple targets vital signs tracking based on VMD algorithm," Sensors, vol. 16, p. 1293, Aug. 2016. [46] Z. Wu and N. E. Huang, "Ensemble empirical mode decomposition: a noise-assisted data analysis method," Adv. Adapt. Data Anal., vol. 1, no. 1, pp. 1-41, 2009. [47] R. A. I. Asyari, K.-Y. Lee, R. E. Arif, T.-S. J. Horng, and D. Teichmann, "A novel approach to remote detection in medical radar applications using flexible transmit array lenses," IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 8, no. 1, pp. 36-50, Mar. 2024. [48] Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology, "Heart rate variability: standards of measurement, physiological interpretation, and clinical use," Circulation, vol. 93, no. 5, pp. 1043-1065, 1996. [49] F. Shaffer and J. P. Ginsberg, "An overview of heart rate variability metrics and norms," Front. Public Health, vol. 5, Sep. 2017. [50] J. Sztajzel, "Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system," Swiss Med. Wkly., vol. 134, no. 35-36, pp. 514-522, 2004. [51] H. V. Huikuri et al., "Measurement of heart rate variability: a clinical tool or a research toy?," J. Am. Coll. Cardiol., vol. 34, no. 7, pp. 1878-1883, 1999. [52] D. Hong et al., "The effect of physician presence on blood pressure," Blood Press. Monit., vol. 17, no. 4, pp. 145-148, 2012. [53] J. M. Bland and D. G. Altman, "Statistical methods for assessing agreement between two methods of clinical measurement," Lancet, vol. 327, no. 8476, pp. 307-310, 1986. [54] D. Giavarina, "Understanding Bland-Altman analysis," Biochem. Med., vol. 25, no. 2, pp. 141-151, 2015. [55] M. Zakrzewski, H. Raittinen, and J. Vanhala, "Comparison of center estimation algorithms for heart and respiration monitoring with microwave Doppler radar," IEEE Sensors J., vol. 12, no. 3, pp. 627-634, Mar. 2012. [56] J. Tu, T. Hwang, and J. Lin, "Respiration rate measurement under 1-D body motion using single continuous-wave Doppler radar vital sign detection system," IEEE Trans. Microw. Theory Tech., vol. 64, no. 6, pp. 1937-1946, Jun. 2016. [57] W.-C. Su, C.-H. Chang, T.-S. Horng, and S.-H. Yu, "5.8 GHz highly sensitive and linear Doppler radar using digital self-injection-locking technology," in Proc. 2022 IEEE/MTT-S Int. Microw. Symp. (IMS), Denver, CO, USA, 2022, pp. 785-787. [58] N. Chahat et al., "Human skin permittivity models for millimetre-wave range," Electron. Lett., vol. 47, no. 7, pp. 427-428, 2011. [59] Kebe, Mamady, et al. "Human vital signs detection methods and potential using radars: A review." Sensors, vol. 20, no. 5, 2020, p. 1454. [60] Li, Changzhi, and Jenshan Lin. "Optimal carrier frequency of non-contact vital sign detectors." 2007 IEEE Radio and Wireless Symposium. IEEE, 2007. [61] Vernier, "Go Direct Respiration Belt," [Online]. Available: https://www.vernier.com/product/go-direct-respiration-belt/. [Accessed: Aug. 10, 2024]. [62] Polar, "H10 Heart Rate Sensor," [Online]. Available: https://www.polar.com/twzh/products/accessories/H10_heart_rate_sensor. [Accessed: Aug. 10, 2024]. [63] J. N. Sameera, M. S. Ishrak, V. M. Lubecke, and O. Boric-Lubecke, "Enhancing beat-to-beat analysis of heart signals with respiration harmonics reduction through demodulation and template matching," IEEE Trans. Microw. Theory Tech., vol. 72, no. 1, pp. 750-758, Jan. 2024. [64] W. Massagram, V. M. Lubecke, A. Høst-Madsen, and O. Boric-Lubecke, "Assessment of heart rate variability and respiratory sinus arrhythmia via Doppler radar," IEEE Trans. Microw. Theory Tech., vol. 57, no. 10, pp. 2542-2549, Oct. 2009. [65] V. L. Petrović, M. M. Janković, A. V. Lupšić, V. R. Mihajlović, and J. S. Popović-Božović, "High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave Doppler radar," IEEE Access, vol. 7, pp. 74721-74733, 2019. [66] W. Xia, Y. Li, and S. Dong, "Radar-based high-accuracy cardiac activity sensing," IEEE Trans. Instrum. Meas., vol. 70, pp. 1-13, 2021. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2029-08-27 校外 Off-campus:開放下載的時間 available 2029-08-27 您的 IP(校外) 位址是 3.141.14.59 現在時間是 2025-04-03 論文校外開放下載的時間是 2029-08-27 Your IP address is 3.141.14.59 The current date is 2025-04-03 This thesis will be available to you on 2029-08-27. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2029-08-27 |
QR Code |