博碩士論文 etd-0729115-120206 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 謝秉錕(Bing-kun Xie) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 碩士(Master) 畢業時期 104學年第1學期
論文名稱(中) 一般第二型模糊集合的型態降階方法
論文名稱(英) The Type-Reduction Method for General Type-2 Fuzzy Sets
檔案
  • etd-0729115-120206.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:5 年後公開 (2020-08-31 公開)

    電子論文:使用者自訂權限:校內 5 年後、校外 5 年後公開

    論文語文/頁數 中文/53
    統計 本論文已被瀏覽 5634 次,被下載 30 次
    摘要(中) 型態降階在第二型模糊系統中是一項非常重要的過程,其主要概念是計算出第二型模糊集合的質心。Liu介紹了α平面的概念,即是一種水平切面的表示法,並以此概念為基礎提出了對第二型模糊集合的型態降階方法,主要做法是將第二型模糊集合透過α切面的方式,以不同的α值將原本的第二型模糊集合解構成多個區間第二型模糊集合,也就是α平面,再綜合這些α平面的結果來得知原先第二型模糊集合的質心。但是Liu所提出的降階方法並無法適用在特定的第二型模糊集合上,假若次要歸屬函數為凹函數時,獲得的α平面未必會是區間第二型模糊集合,因此我們擴展Liu的型態降階方法,基於α平面的概念,將其遇到的問題轉換成多個子問題,藉由解決這多個子問題來得到原本問題的結果。我們用數學的式子證明我們所提出的方法是正確且有效的。
    摘要(英) A centroid type-reduction strategy for type-2 fuzzy sets based on decomposed α-planes was proposed by Liu. However, it cannot be applied to deriving the centroid of a type-2 fuzzy set with concave secondary membership functions. In this paper, we extend the Liu’s method so that the centroid of a type-2 fuzzy set with concave secondary membership functions can be derived. For each decomposed α-plane, we convert it into a group of interval type-2 fuzzy sets. The union of the centroids of its member interval type-2 fuzzy sets constitutes the centroid of theα-plane. Then the weighted union of the centroids of the decomposed α-planes becomes the centroid type-reduced set of the original type-2 fuzzy set. When dealing with a type-2 fuzzy set with convex secondary membership functions, our proposed method is reduced to the Liu’s method.
    關鍵字(中)
  • α平面
  • 區間第二型模糊集合
  • 第二型模糊集合
  • 型態降階
  • Karnik-Mendel演算法
  • 關鍵字(英)
  • interval type-2 fuzzy set
  • α-plane
  • type-2 fuzzy set
  • Karnik-Mendel algorithm
  • type-reduction
  • 論文目次 論文審定書+i
    致謝+iii
    摘要+iv
    Abstract+v
    圖目錄+viii
    表目錄+x
    第一章 導論+1
    2.1. 研究背景與目的+1
    2.2. 論文架構+3
    第二章 文獻探討+4
    3.1. 模糊集合+4
    3.2. 第二型模糊集合+4
    3.3. 區間第二型模糊集合+5
    3.4. 模糊系統+7
    3.5. 型態降階+8
    3.6. Karnik-Mendel演算法+8
    3.7. 增強型Karnik-Mendel演算法+9
    第三章 Liu的型態降階方法+11
    4.1. α平面表示法+11
    4.2. 第二型模糊集合的降階方法+11
    第四章 研究方法 +13
    5.1. Liu的型態降階方法缺陷+13
    5.2. 我們的型態降階方法+14
    5.3. 範例+17
    5.3.1. 第二型模糊集合範例+17
    5.3.2. 實驗流程+18
    第五章 實驗結果 +27
    6.1. 實驗一+27
    6.2. 實驗二+30
    6.3. 實驗三+33
    第六章 結論與未來展望+37
    參考文獻+38
    參考文獻 [1]  N. N. Karnik, J. M. Mendel, and Q. Liang, "Type-2 fuzzy logic systems," IEEE Transactions on Fuzzy Systems, 7(6):643-658, 1999.
    [2] J. M. Mendel, "Type-2 fuzzy sets and systems: an overview," IEEE Transactions on Computational Intelligence Magazine, 2(1):20-29, 2007.
    [3] VH. Hagras, "A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots," IEEE Transactions on Fuzzy Systems, 12(4):524–539, 2004.
    [4] H. B. Mitchell, "Pattern recognition using type-2 fuzzy sets," Information Sciences, 170(2-4):409–418, 2005.
    [5] J. Zeng and Z.-Q. Liu, "Type-2 fuzzy Markov random fields and their application to handwritten Chinese character recognition," IEEE Transactions on Fuzzy Systems, 170(2-4):409–418, 2005.
    [6] R. Sepúlveda, O. Castillo, P. Melin, A. Rodríguez-Díaz, and O. Montiel, "Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic," Information Sciences, 177(10):2023–2048, 2007.
    [7] L. A. Lucas, T.M. Centeno, and M. R. Delgado, "Land cover classification based on general type-2 fuzzy classifiers," International Journal of Fuzzy systems, 10(3):207–261, 2008.
    [8] F.-J. Lin and P.-H. Chou, "Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network," IEEE Transactions on Industrial Electronics, 56(1):178–193, 2009.
    [9] O. Mendoza, P. Melin, and G. Licea, "A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral," Information Sciences, 179(13):2078–2101, 2009.
    [10] M. F. Zarandi, B. Rezaee, I. Turksen, and E. Neshat, "A type-2 fuzzy Rule-based Expert System Model for Stock Price Analysis," Expert Systems with Applications, 36(1)139–154, 2009.
    [11] P. Melin, O. Mendoza, and O. Castillo, "An improved method for edge detection based on interval type-2 fuzzy logic," Expert Systems with Applications, 37(12):8527–8535, 2010.
    [12] A. Bouchachia and C. Vanaret, "GT2FC: An online growing interval type-2 self-learning fuzzy classifier," IEEE Transactions on Fuzzy Systems, 22(4):999–1018, 2014.
    [13] A. Khosravi and S. Nahavandi, "Load forecasting using interval type-2 fuzzy logic systems: Optimal type reduction," IEEE Transactions on Industrial Informatics, 10(2):1055–1063, 2014.
    [14] P. Melin, C. I. Gonzalez, J. R. Castro, O. Mendoza, and O. Castillo, "Edge-detection method for image processing based on generalized type-2 fuzzy logic," IEEE Transactions on Fuzzy Systems, 22(6):1515–1525, 2014.
    [15] L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning–I," Information Sciences, 8(3):199–249, 1975.
    [16] L. A. Lucas, T.M. Centeno, and M. R. Delgado, "General type-2 fuzzy inference systems: analysis, design and computational aspects," IEEE Int. Conf. Fuzzy Syst., pp. 1–6, 2007.
    [17] J. M. Mendel, "General type-2 fuzzy logic systems made simple: A tutorial," IEEE Transactions on Fuzzy Systems, 22(5):1162–1182, 2014.
    [18] S. Greenfield, R. I. John, and S. Coupland, "A novel sampling method for type-2 defuzzification" UK Workshop Comput. Intell., pp. 120–127, 2005.
    [19] W.-W. Tan and D. Wu, "Design of type-reduction strategies for type-2 fuzzy logic systems using genetic algorithms," Advances in Evolutionary Computing for System Design, L. C. Jain, V. Palade, and D. Srinivasan, Eds. New York: Springer-Verlag, pp. 169–187, 2007.
    [20] S. Coupland and R. John, "A fast geometric method for defuzzification of type-2 fuzzy Sets," IEEE Transactions on Fuzzy Systems, 16(4):929–941, 2008.
    [21] F. Liu, "An efficient centroid type-reduction strategy for general type-2 fuzzy logic system," Information Sciences, 178(9):2224–2236, 2008.
    [22] C.-Y. Yeh, W.-H. R. Jen, and S.-J. Lee, "An enhanced type-reduction algorithm for type-2 fuzzy sets," IEEE Transactions on Fuzzy Systems, 19(2):227-240, 2011.
    [23] D. Zhai and J. M. Mendel, "Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm," IEEE Transactions on Fuzzy Systems, 19(2):401–422, 2011.
    [24] H.-J. Wu, Y.-K. Su, and S.-J. Lee, "A fast method for computing the centroid of a type-2 fuzzy set," IEEE Transactions on Systems, Man, and Cybernetics–Part B, 42(3):764-777, 2012.
    [25] D. Zhai and J. M. Mendel, "Enhanced centroid-flow algorithm for computing the centroid of general type-2 fuzzy sets," IEEE Transactions on Fuzzy Systems, 20(5):939–956, 2012.
    [26] N. N. Karnik and J. M. Mendel, "Centroid of a type-2 fuzzy set," Information Sciences, 132(1-4):195–220, 2001.
    [27] J. M. Mendel and F. Liu, "Super-exponential convergence of the Karnik- Mendel algorithms for computing the centroid of an interval type-2 fuzzy set," IEEE Transactions on Fuzzy Systems, 15(2):309–320, 2007.
    [28] M. Nie and W. W. Tan, "Towards an efficient type-reduction method for interval type-2 fuzzy logic systems," IEEE Int. Conf. Fuzzy Syst., pp. 1427–1432, 2008.
    [29] D. Wu and J. M. Mendel, "Enhanced Karnik-Mendel algorithms," IEEE Transactions on Fuzzy Systems, 17(4):923–934, 2009.
    [30] J. M. Mendel, "On KM Algorithms for Solving Type-2 Fuzzy Set Problems," IEEE Transactions on Fuzzy Systems, 21(3):426-445, 2013.
    [31] J. M. Mendel and X. Liu, "Simplified interval type-2 fuzzy logic system." IEEE Transactions on Fuzzy Systems, 21(6):1056–1069, 2013.
    [32] C.-L. Chen, S.-C. Chen, and Y.-H. Kuo, "The reduction of interval type-2 LR fuzzy sets," IEEE Transactions on Fuzzy Systems, 22(4):840–858, 2014.
    [33] G. J. Klir and B. Yuan, "Fuzzy Sets and Fuzzy Logic." Pearson Education Taiwan, 2005. April
    [34] S.-M. Chen, H.-P. Chu, and T.-W. Sheu, "TAIEX Forecasting Using Fuzzy Time Series and Automatically Generated Weights of Multiple Factors," IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS¡XPART A: SYSTEMS AND HUMANS, vol. 42, pp. 1485-1495, November 2012.
    [35] R. J. Kuo, C. H. Chen, and Y. C. Hwang, "An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network," Fuzzy Sets and Systems, vol. 118, pp. 21-45, February 2001.
    [36] M. T. Hagan, H. B. Dcmuth, and M. Beale, Neural Network Design: Vikas Publishing House, 2003.
    口試委員
  • 吳志宏 - 召集委員
  • 侯俊良 - 委員
  • 歐陽振森 - 委員
  • 蔡賢亮 - 委員
  • 李錫智 - 指導教授
  • 口試日期 2015-08-27 繳交日期 2015-08-31

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫