Responsive image
博碩士論文 etd-0729124-165632 詳細資訊
Title page for etd-0729124-165632
論文名稱
Title
利用Wi-Fi訊號進行人體成像與生理感測之轉頻注入鎖定雷達
Frequency-Conversion Injection-Locked Radar for Human Imaging and Vital-Sign Sensing with Wi-Fi Signals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-08-15
繳交日期
Date of Submission
2024-08-29
關鍵字
Keywords
都普勒雷達、數位波束成型、相位陣列、Wi-Fi感測、生理感測、人體成像、分時多工
Doppler radar, digital beamforming, phased array, Wi-Fi sensing, vital sign detection, human imaging, time-division multiplexing
統計
Statistics
本論文已被瀏覽 41 次,被下載 0
The thesis/dissertation has been browsed 41 times, has been downloaded 0 times.
中文摘要
本論文提出以Wi-Fi為訊號源結合轉頻技術結與注入鎖定架構的被動式雷達系統。透過此系統,可達到使用者在進行無線Wi-Fi傳輸的時,連線的穩定度不會受到系統的影響。此外,本文另結合FSK的操作模式,使其能夠獲得目標的距離。由於Wi-Fi訊號自身的振幅調制和相位調制,導致解調後的基頻訊號較難以獲得到微弱的心跳,因此本文另外結合雙通道抵銷技術,有效提升基頻訊號的訊噪比,從而能夠準確量測人體的生理訊號。
另外本文也運用MIMO系統,結合分時多工(Time-Division Multiplexing, TDM)的方式,使雷達更進一步具有垂直以及水平方位的解析度,透過數位波束成型的演算法,達成對目標的成像應用。

Abstract
This paper proposes a passive radar system that utilizes Wi-Fi as a signal source and combines frequency-conversion technology with an injection-locked architecture. This system ensures that the stability of the user's wireless connection remains unaffected during data transmission. Additionally, the system incorporates FSK operation mode, enabling it to accurately determine the distance to the target. Due to the inherent amplitude and phase modulation in Wi-Fi signals, the demodulated baseband signal may struggle to capture weak heartbeat signals. To address this, the paper introduces dual-channel cancellation technology, significantly improving the signal-to-noise ratio (SNR) of the baseband signal, thereby allowing for precise vital sign detection.
Furthermore, this paper employs a MIMO system in conjunction with Time-Division Multiplexing (TDM) mechanism, which obtains the radar’s vertical and horizontal resolution. By utilizing digital beamforming algorithms, the system is capable of achieving imaging applications for the target.

目次 Table of Contents
論文審定書 i
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 x
第一章 序論 1
1.1 研究背景與動機 1
1.2 雷達種類介紹與應用 2
1.2.1主動雷達 2
1.2.2 被動雷達 5
1.2.3 通道狀態訊息感測 6
1.2.4 注入鎖定式被動雷達(ILQR) 7
1.3 相位陣列 8
1.4 雷達成像 8
1.5 章節規劃 9
第二章 轉頻注入鎖定雷達 10
2.1 前言 10
2.1本地振盪洩漏問題 10
2.2 Wi-Fi感測原理及注入牽引抵銷技術 11
2.3 直流準位偏移校正(DC-Offsets Removal) 13
2.3.1 直流準位偏移來源 13
2.3.2 校正方式 14
2.4 轉頻CW感測模式 16
2.4.1 系統架構 16
2.4.2 靈敏度測試 19
2.4.3 生理感測 23
2.5 轉頻結合FSK測距模式 26
2.5.1 測距原理 26
2.5.2系統架構 26
2.5.3 金屬板測距驗證 30
2.5.4 人體測距與生理感測 34
第三章 人體成像 40
3.1 前言 40
3.2 陣列天線設計 40
3.3 二維成像 41
3.3.1 訊號處理與校正 41
3.3.2 系統架構 45
3.3.3 角度解析度 48
3.3.4 人體成像與定位 50
第四章 結論 55
參考文獻 56
參考文獻 References
[1] 國家發展委員會, “中華民國人口推估(2022年至2070年),” [Online]. Available: https://ppws.ndc.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDY0L3JlbGZpbGUvMTAzNDcvNTAvMTMxNmIxMGYtMzUzYS00NDk3LTk2N2YtN2M2MjA5ZjIwNzZmLnBkZg%3d%3d&n=5Lit6I%2bv5rCR5ZyL5Lq65Y%2bj5o6o5LywKDIwMjLlubToh7MyMDcw5bm0KeWgseWRii5wZGY%3d&icon=.pdf. Accessed: Aug. 10, 2024.
[2] P.-H. Juan, C.-Y. Chueh, and F.-K. Wang, “Distributed MIMO CW radar for locating multiple people and detecting their vital signs,” IEEE Trans. Microw. Theory Techn., vol. 71, no. 3, pp. 1312–1325, Mar. 2023.
[3] 林睿彥。「Wi-Fi為基礎之人體成像與生理監測」。碩士論文,國立中山大學電機工程學系研究所,2020。
[4] F.-K. Wang, M.-C. Tang, Y.-C. Chiu, and T.-S. Horng, “Gesture sensing using retransmitted wireless communication signals based on Doppler radar technology,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4592–4602, Dec. 2015.
[5] J. Li, Z. Zeng, J. Sun, and F. Liu, “Through-wall detection of human beings movement by UWB radar,” IEEE Geosci. Remote Sens. Lett., vol. 9, no. 6, pp. 1079-1083, Nov. 2012.
[6] E. C. Fear, J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, “Microwave breast imaging with a monostatic radar-based system: A study of application to patients,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2119-2128, May 2013.
[7] L. Ren, Y. S. Koo, H. Wang, Y. Wang, Q. Liu, and A. E. Fathy, “Noncontact multiple heartbeats detection and subject localization using UWB impulse Doppler radar,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 690–692, Oct. 2015.
[8] Batool, S.; Frezza, F.; Mangini, F.; Simeoni, P. Introduction to Radar Scattering Application in Remote Sensing and Diagnostics: Review. Atmosphere 2020, 11, 517.
[9] A. A. Pramudita, L. Lukas, and E. Edwar, “Contactless hand gesture sensor based on array of CW radar for human to machine interface,” IEEE Sensors J., vol. 21, no. 13, pp. 15196–15208, Jul. 2021.
[10] J. Tu and J. Lin, ‘‘Fast acquisition of heart rate in noncontact vital sign radar measurement using time-window-variation technique,’’ IEEE Trans. Instrum. Meas., vol. 65, no. 1, pp. 112–122, Jan. 2016.
[11] J. Tu, T. Hwang, J. Lin, “Respiration rate measurement under 1-D body motion using single Continuous-Wave Doppler radar vital sign detection system,” IEEE Trans. on Microw. Theory and Tech., vol. 64, no. 6, pp. 1937-1946, 2016.
[12] C. Feng et al., “Multitarget vital signs measurement with chest motion imaging based on MIMO radar,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 4735–4747, Nov. 2021.
[13] M. Nosrati, S. Shahsavari, S. Lee, H. Wang, and N. Tavassolian, “A concurrent dual-beam phased-array Doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2390–2404, Apr. 2019.
[14] C. Waldschmidt, J. Hasch, and W. Menzel, “Automotive radar— From first efforts to future systems,” IEEE J. Microw., vol. 1, no. 1, pp. 135–148, Jan. 2021.
[15] Z. Zhang, Z. Tian, and M. Zhou, “Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor,” IEEE Sensors J., vol. 18, no. 8, pp. 3278–3289, Apr. 2018.
[16] Z. Peng, J.-M. Muñoz-Ferreras, R. Gómez-García, and C. Li, “FMCW radar fall detection based on ISAR processing utilizing the properties of RCS, range, and Doppler,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2016, pp. 1–3.
[17] S. Jardak et al., “Detection and localization of multiple short range targets using FMCW radar signal,” in Proc. Global Symp. Millim. Waves (GSMM), ESA Workshop Millim.-Wave Technol. Appl., Jun. 2016, pp. 1–4.
[18] J.-M. Muñoz-Ferreras, Z. Peng, R. Gómez-García, and C. Li, “Review on advanced short-range multimode continuous-wave radar architectures for healthcare applications,” IEEE J. Electromagn. RF Microw. Med. Biol., vol. 1, no. 1, pp. 14–25, Jun. 2017.
[19] D. W. O’Hagan et al., “Passive bistatic radar (PBR) for harbour protection applications,” in Proc. IEEE Radar Conf., May 2012, pp. 446–450.
[20] D. Tang, V. G. R. Varela, D. V. Q. Rodrigues, D. Rodriguez, and C. Li, “A Wi-Fi frequency band passive biomedical Doppler radar sensor,” IEEE Trans. Microw. Theory Techn., early access, Aug., 2022.
[21] B. Huang, G. Mao, Y. Qin, and Y. Wei, “Pedestrian flow estimation through passive WiFi sensing,” IEEE Trans. Mobile Comput., vol. 20, no. 4, pp. 1529–1542, Apr. 2021.
[22] H. Sun, L. G. Chia, and S. G. Razul, “Through-wall human sensing with WiFi passive radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 4, pp. 2135–2148, Aug. 2021.
[23] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. Kovacs, “Range correlation and I/Q performance benefits in single chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[24] Y.-F Huang, T.-Y. Yao, and H.-J. Yang, “Performance of hand gesture recognition based on received signal strength with weighting signaling in wireless communications,” in Proc. 18th Int. Conf. Netw.-Based Inform. Syst., Sep. 2015, pp. 596-600.
[25] D. Mulyono and S.-J. Horng, “A study of finger-vein biometric for personal identification,” in Proc. IEEE Int. Symp. Biometrics Secur. Technol., Apr. 2008, pp. 1–8.
[26] F. Wang, F. Zhang, C. Wu, B. Wang, and K. J. R. Liu, “ViMo: Multiperson vital sign monitoring using commodity millimeter-wave radio,” IEEE Internet Things J., vol. 8, no. 3, pp. 1294–1307, Feb. 2021.
[27] X. Wang, C. Yang, and S. Mao, “PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 1230–1239.
[28] Y. Ge et al., “Contactless WiFi sensing and monitoring for future healthcare–emerging trends, challenges, and opportunities,” IEEE Rev. Biomed. Eng., vol. 16, pp. 171–191, 2023.
[29] S. H. Talisa, K. W. O’Haver, T. M. Comberiate, M. D. Sharp, and O. F. Somerlock, “Benefits of digital phased array radars,” Proc. IEEE, vol. 104, no. 3, pp. 530–543, Mar. 2016.
[30] M. G. Fernández, Y. Á. López, A. A. Arboleya, B. G. Valdés, Y. R. Vaqueiro, F. L.-H. Andrés, and A. P. García, ‘‘Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle,’’ IEEE Access, vol. 6, pp. 45100–45112, 2018.
[31] C. Hu, L. Wang, and O. Loffeld, “Inverse synthetic aperture radar imaging exploiting dictionary learning,” in Proc. IEEE Radar Conf. (RadarConf), Apr. 2018, pp. 1084-1088.
[32] J. Joung, “Space–Time Line Code,” IEEE Access, vol. 6, pp. 1023-1041, Feb. 2018.
[33] J. L. J. Liang and Q. L. Q. Liang, “Orthogonal waveform design and performance analysis in radar sensor networks,” in Proc. IEEE Mil. Commun. Conf. (MILCOM), Oct. 2006, pp. 1–6.
[34] 林家齊。「5.8 GHz Wi-Fi 都卜勒雷達之實現與生理監測應用」。碩士論文,國立中山大學電機工程學系研究所,2021。
[35] R. Svitek and S. Raman, “DC offsets in direct-conversion receivers: Characterization and implications,” IEEE Microw. Mag., vol. 6, no. 3, pp. 76–86, Sep. 2005.
[36] YJ. Kim, DK. Kim, “Experimental characterization process of DC offset performance for Multiple CW Doppler Radar,” The 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC 2019), June 23-26, 2019.
[37] I.-S. Lee, J.-H. Park, and J.-R. Yang, “Detrending technique for denoising in CW radar,” Sensors, vol. 21, no. 19, p. 6376, Sep. 2021.
[38] J.-H. Park and J.-R. Yang, “Multiphase continuous-wave Doppler radar with multiarc circle fitting algorithm for small periodic displacement measurement,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 5135–5144, Nov. 2021.
[39] B. Razavi, “RF Microelectronics,” in Prentice-Hall Communications Engineering and Emerging Technologies Series, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2011.
[40] D. Obeid, S. Sadek, G. Zaharia, and G. El Zein, "Doppler radar for heartbeat rate and heart rate variability extraction," in 2011 E-Health and Bioengineering Conference (EHB), 2011: IEEE, pp. 1-4.
[41] F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand, “Capturing the human figure through a wall,” ACM Trans. Graph., vol. 34, no. 6, 2015, Art. no. 219.
[42] S. J. Orfanidis, Electromagnetic Waves and Antennas. Piscataway, NJ, USA: Rutgers Univ., 2016. [Online]. Available: http://eceweb1.rutgers. edu/∼orfanidi/ewa/
[43] Lai, Y. C., Horng, T. S., Su, W. C., and Lin, J. Y., “Wi-Fi-Based Posture Imaging Radar for Vital Sign Monitoring and Fall Detection,” IEEE Trans. Microw. Theory Techn., pp. 1–10, Apr 2024.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2034-08-29
校外 Off-campus:開放下載的時間 available 2034-08-29

您的 IP(校外) 位址是 3.146.152.119
現在時間是 2024-11-22
論文校外開放下載的時間是 2034-08-29

Your IP address is 3.146.152.119
The current date is 2024-11-22
This thesis will be available to you on 2034-08-29.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2029-08-29

QR Code