論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2032-08-30
校外 Off-campus:開放下載的時間 available 2032-08-30
論文名稱 Title |
探索二維凡得瓦合金中的磁性--CrPtTe2 Exploring magnetism in 2-dimensional van der Waals alloys –CrPtTe2 |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
98 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-07-29 |
繳交日期 Date of Submission |
2022-08-30 |
關鍵字 Keywords |
二維材料、合金、狄拉克半金屬、鐵磁性、常壓化學氣相沉積法 2D materials, alloy, Dirac semimetal, ferromagnetism, APCVD |
||
統計 Statistics |
本論文已被瀏覽 245 次,被下載 0 次 The thesis/dissertation has been browsed 245 times, has been downloaded 0 times. |
中文摘要 |
過渡金屬二碲化物 (XTe2) 顯示出過渡金屬的新特性。當X是過渡金屬,例如 Pt,而碲化後所形成的PtTe2會是狄拉克半金屬並且表現出無質量的狄拉克費米子以及高電子遷移率。當 X 是Cr,而碲化後所形成的CrTe2是本徵二維鐵磁金屬,具有巨大的反常霍爾效應。然而我們所生長的樣品是在常溫且薄膜的形式下也能夠擁有此性質。因此,我們研究CrTe2、PtTe2、PtTe2/CrTe2 和 Pt1-xCrxTe2合金的生長以及特性。我們這次的目的是成功地生長二維 CrPtTe2 薄膜並對其進行特性的分析。為此,我們必須建立一套穩定的生長技術,在單晶基板上磊晶薄膜。首先,我們必須先使用e-beam進行 Cr、Pt、CrPt 的超薄 (< 5 nm) 金屬薄膜/合金生長,再通過RTA的方法將薄膜進行熱處理,最後再通過常壓化學氣相沉積 (APCVD) 在惰性氣體中進行碲化以獲得二維二硫屬化物化合物。成功合成後,通過一系列分析技術進行進一步特性分析,以清楚地觀察結構、振動、樣貌和磁性。 |
Abstract |
Transition metal ditellurides (XTe2) show new properties based on transition metal types. For example, if X is a transition metal, such as Pt, then PtTe2 transforms into Dirac semimetals exhibiting massless Dirac fermions and high mobility, when X is Cr, then CrTe2 is an intrinsic two-dimensional ferromagnetic metal with a huge anomalous Hall effect. However, the samples we grew can have this property at room temperature and in the form of thin films. Therefore, we study the growth and properties of CrTe2¬, PtTe2, PtTe2/CrTe2 and Pt1-xCrxTe2 alloys. Our goal this time is to successfully grow two-dimensional CrPtTe2 thin films and analyze their properties. To this end, we must establish a set of stable growth techniques to epitaxial thin films on single crystal substrates. First, we must first use e-beam for ultra-thin (< 5 nm) metal film/alloy growth of Cr, Pt, CrPt, then heat the film by RTA, and finally using atmospheric pressure chemical vapor deposition (APCVD) in an inert gas for tellurization heat treatment to obtain two-dimensional dichalcogenide compounds. Once successfully synthesized, further characterization was performed through a range of analytical techniques to clearly observe structure, vibration, morphology, and magnetism. |
目次 Table of Contents |
Verification letter from the oral examination committee......................................... i 中文摘要....................................................................................................................... ii Abstract....................................................................................................................... iii Table of content...........................................................................................................iv List of Figures...............................................................................................................v List of Tables………………………………………………………………………... vi Chapter 1.Introduction1 1.1Definition and thin film growth of transition metal dichalcogenides1 1.2Characteristic of PtTe2 and CrTe2 samples2 Chapter 2.Experimental Method4 2.1The introduction of the experiment4 2.1.1Platinum sputter4 2.1.2Dual e-beam evaporator5 2.1.3High-temperature furnace (APCVD system)6 2.1.4Scanning electron microscope (SEM)8 2.1.5Rapid thermal annealing (RTA)9 2.1.6Raman spectrometer9 2.1.7High-resolution x-ray diffraction (HRXRD) spectroscope11 2.1.8Superconducting quantum interference device (SQUID)13 2.1.9X-ray photoelectron spectroscopy (XPS)15 2.2Sample growth information16 2.2.1Single layer film series (series A)16 2.2.2Trilayer (series B) and bilayer (series C) film series20 2.2.3Alloy film series (series D)25 Chapter 3.Results And Discussion28 3.1Series A: Single layer CrTe2 and PtTe228 3.1.1PtTe2 measurement28 3.1.1.1Raman measurement28 3.1.1.2XRD (ϴ-2ϴ) measurement34 3.1.2CrTe2 measurement35 3.1.2.1SEM measurement35 3.1.2.2Raman measurement37 3.1.2.3XRD (ϴ-2ϴ) measurement40 3.2Series B: Trilayer tellurization after Pt/Cr/Pt41 3.2.1PtTe2/CrTe2/PtTe2 measurement41 3.2.1.1SEM measurement41 3.2.1.2Raman measurement44 3.2.1.3XRD (ϴ-2ϴ) measurement50 3.2.1.4SQUID measurement51 3.3Series C: Bilayer tellurization after Cr/Pt (Japan Pt)53 3.3.1CrTe2/PtTe2 measurement53 3.3.1.1SEM measurement53 3.3.1.2Raman measurement55 3.3.1.3XRD (ϴ-2ϴ) measurement58 3.4Series D: CrPt alloy thin films after CrPt alloy tellurization60 3.4.1CrPtTe2 measurement60 3.4.1.1SEM measurement60 3.4.1.2Raman measurement62 3.4.1.3XRD (ϴ-2ϴ) measurement65 3.4.1.4XPS measurement68 3.4.1.5SQUID measurement74 Chapter 4.Conclusion76 References77 Appendix81 |
參考文獻 References |
1.P. K. Cheng, S. Ahmed, J. Qiao, L. W. Wong, C. F. Yuen, A. M. Saleque, M. N. A. S. Ivan, S. U. Hani, M. I. Hossain, J. Zhao, Q. Wen, and Y. H. Tsang, Nonlinear optical properties of two-dimensional palladium ditelluride (PdTe2) and its application as aerosol jet printed saturable absorbers for broadband ultrafast photonics, Applied Materials Today, Appl. Mater. Today 26, 101296 (2022). 2.H. Xu, J. Wei, H. Zhou, J. Feng, T. Xu, H. Du, C. He, Y. Huang, J. Zhang, Y. Liu, H. C. Wu, C. Guo, X. Wang, Y. Guang, H. Wei, Y. Peng, W. Jiang, G. Yu, and X. Han, High Spin Hall Conductivity in Large-Area Type-II Dirac Semimetal PtTe2, Adv. Mater. 32, 1 (2020). 3.Y. Sun, P. Yan, J. Ning, X. Zhang, Y. Zhao, Q. Gao, M. Kanagaraj, K. Zhang, J. Li, X. Lu, Y. Yan, Y. Li, Y. Xu, and L. He, Ferromagnetism in two-dimensional CrTe2 epitaxial films down to a few atomic layers, AIP Adv. 11, 035138 (2021). 4.L. Meng, Z. Zhou, M. Xu, S. Yang, K. Si, L. Liu, X. Wang, H. Jiang, B. Li, P. Qin, P. Zhang, J. Wang, Z. Liu, P. Tang, Y. Ye, W. Zhou, L. Bao, H. J. Gao, and Y. Gong, Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition, Nat. Commun. 12, 809 (2021). 5.J. H. Ren, Z. H. Yang, T. Huang, W. Q. Huang, W. Y. Hu, and G. F. Huang, Monolayer PtTe2: A promising candidate for NO2 sensor with ultrahigh sensitivity and selectivity, Phys. E Low-Dimensional Syst. Nanostructures 134, 114925 (2021). 6.A. Otero Fumega, J. Phillips, and V. Pardo, Controlled Two-Dimensional Ferromagnetism in 1T–CrTe2: The Role of Charge Density Wave and Strain, J. Phys. Chem. C 124, 21047 (2020). 7.A. Roy, S. Guchhait, R. Dey, T. Pramanik, C. C. Hsieh, A. Rai, and S. K. Banerjee, Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films, ACS Nano 9, 3772 (2015). 8.K. Kanazawa, K. Yamawaki, N. Sekita, Y. Nishio, S. Kuroda, M. Mitome, and Y. Bando, Structural and magnetic properties of hexagonal Cr1−δTe films grown on CdTe(001) by molecular beam epitaxy, J. Cryst. Growth 415, 31 (2015). 9.R. Akiyama, H. Oikawa, K. Yamawaki, and S. Kuroda, Electric-field modulation of ferromagnetism in hexagonal chromium telluride thin film. Phys. Status Solidi C, 11, 1320 (2014). 10.L. Hui, S. T. Lim, J. F. Bi, and K. L. Teo, Investigation on the antiferromagnetic component in the intrinsic exchange bias in structurally single phase Cr2Te3 thin film, J. Appl. Phys. 111, 07D719 (2012). 11.H. Saito, S. Yuasa, and K. Ando, Tunnel magnetoresistance effect in Cr1−δTe∕AlAs∕Ga1-xMnxAs magnetic tunnel junctions, J. Appl. Phys. 97, 10D305 (2005). 12.F. S. Luo, J. S. Ying, T. W. Chen, F. Tang, D. W. Zhang, W. Q. Dong, Y. Zhang, S. S. Li, Y. Fang, and R. K. Zheng, Anomalous Hall effect and anisotropic magnetoresistance of molecular beam epitaxy grown Cr2Te3 thin films, J. Cryst. Growth 582, 126541 (2022). 13.R. Hao, M. Xu, T. Zhou, S. Kang, G. Liu, L. Bai, G. Han, S. Yu, and S. Yan, Detection of interfacial spin accumulation induced by anomalous Hall effect in ferromagnets, J. Magn. Magn. Mater. 477, 209 (2019). 14.Q. D .Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Three-dimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B - Condens. Matter Mater. Phys. 91, 205128 (2015). 15.M. I. Naher and S. H. Naqib, First-principles insights into the mechanical, optoelectronic, thermophysical, and lattice dynamical properties of binary topological semimetal BaGa2, Results in Physics, Results Phys. 37, 105507 (2022). 16.D. Bhattacharya and D. Jana, Worm-graphene: A two-dimensional orthorhombic carbon semimetal with massless Dirac fermion, Appl. Surf. Sci. 585, 152457 (2022). 17.W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2, ACS Nano. 7, 791 (2013). 18.N. P Jørstad, S. Fiorentini, W. J. Loch, W. Goes, S. Selberherr, and V. Sverdlov, Finite element modeling of spin–orbit torques, Solid. State. Electron. 194, 108323 (2022). 19.S. Ning, H. Liu, J. Wu, and F. Luo, Challenges and opportunities for spintronics based on spin orbit torque, Fundam. Res. 2, 535 (2022). 20.E. S. Park, B. C. Min, H. C. Koo, K. W. Kim, and K. J. Lee, Spin-orbit torques induced by spin Hall and spin swapping currents of a separate ferromagnet in a magn, Curr. Appl. Phys. 29, 54 (2021). 21.A. Ali, Application of Nanomaterials in Environmental Improvement, Chapter in book: Nanotechnology and the Environment. Publisher: IntechOpen (2020). 22.H. Xu, C. Guo, J. Zhang, W. Guo, C. N. Kuo, C. S. Lue, W. Hu, L. Wang, G. Chen, A. Politano, X. Chen, and W. Lu, PtTe2-Based Type-II Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection, Small 15, 1903362 (2019). 23.J. B. Mc Manus, D. V. Horvath, M. P. Browne, C. P. Cullen, G. Cunningham, T. Hallam, K. Zhussupbekov, D. Mullarkey, C. O. Coileáin, I. V. Shvets, M. Pumera, G. S. Duesberg, and N. McEvoy, Low-temperature synthesis and electrocatalytic application of large-area PtTe2 thin films, Nanotechnology 31, 375601 (2020). 24.T. J. Ko, S. S. Han, E. Okogbue, M. S. Shawkat, M. Wang, J. Ma, T. S. Bae, S. BinHafiz, D. K. Ko, H. S. Chung, K. H. Oh, and Y. Jung, Wafer-scale 2D PtTe2 layers-enabled Kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness, Appl. Mater. Today 20, 100718 (2020). 25.X . Sun, W. Li, X. Wang, Q. Sui, T. Zang, Z-J. Wang, L. Liu, D. Li, S. Feng, S. Zhong, W. Hanwen, V. Bouchiat, M. Regueiro, N. Rougemaille, J. Coraux, A. Purbawati, A. Hadj-Azzem, Z. Wang, B. Dong and Z. Zhang, Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 13 3358 (2020). 26.A. Purbawati, J. Coraux, J. Vogel, A. Hadj-Azzem, N. J. Wu, N. Bendiab, D. Jegouso, J. Renard, L. Marty, V. Bouchiat, A. Sulpice, L. Aballe, M. Foerster, F. Genuzio, A. Locatelli, T. O. Menteş, Z. V. Han, X. Sun, M. Núñez-Regueiro, and N. Rougemaille, In-Plane Magnetic Domains and Neél-like Domain Walls in Thin Flakes of the Room Temperature CrTe2 Van der Waals Ferromagnet, ACS Appl. Mater. Interfaces 12, 30702 (2020). 27.S. Palagummi and F.-G. Yuan, Yuan, Magnetic levitation and its application for low frequency vibration energy harvesting, Structural Health Monitoring (SHM) in Aerospace Structures, 8, 213 (2016). 28.X. Zhang, Q. Lu, W. Liu, W. Niu, J. Sun, J. Cook, M. Vaninger, P. F. Miceli, D. J. Singh, S. W. Lian, T. R. Chang, X. He, J. Du, L. He, R. Zhang, G. Bian, and Y. Xu, Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films, Nat. Commun. 12, 2492 (2021). 29.M. K. Lin, R. A. B. Villaos, J. A. Hlevyack, P. Chen, R. Y. Liu, C. H. Hsu, J. Avila, S. K. Mo, F. C. Chuang, and T. C. Chiang, Dimensionality-Mediated Semimetal-Semiconductor Transition in Ultrathin PtTe2 Films, Phys. Rev. Lett. 124, 036402 (2020). |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2032-08-30 校外 Off-campus:開放下載的時間 available 2032-08-30 您的 IP(校外) 位址是 216.73.216.6 現在時間是 2025-06-07 論文校外開放下載的時間是 2032-08-30 Your IP address is 216.73.216.6 The current date is 2025-06-07 This thesis will be available to you on 2032-08-30. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-08-30 |
QR Code |