論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-30
校外 Off-campus:開放下載的時間 available 2026-08-30
論文名稱 Title |
使用自我注入鎖定技術之雷達系統 Radar System using Self-Injection-Locked Technology |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
66 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-08-28 |
繳交日期 Date of Submission |
2023-08-30 |
關鍵字 Keywords |
自我注入鎖定雷達、頻率轉換、高頻雷達、頻率調變連續波雷達、外差式自我注入鎖定雷達 self-injection-locked radar, frequency conversion, high frequency radar, frequency modulated continuous wave radar, heterodyne self-injection-locking radar |
||
統計 Statistics |
本論文已被瀏覽 106 次,被下載 0 次 The thesis/dissertation has been browsed 106 times, has been downloaded 0 times. |
中文摘要 |
本論文使用自我注入鎖定技術應用於雷達系統,提出外差式自我注入鎖定雷達。較於傳統雷達系統,能有效改善靈敏度、降低雜波與周遭環境之干擾、以及降低成本。由於操作頻率會大幅影響系統的靈敏度,如果直接降低SILO的中心頻率將降低雷達系統的性能,因此本論文之雷達的發射頻率通過外插式架構從920 MHz降低到30 MHz,保持利用高頻SILO的靈敏度來提高系統的訊雜比,接收訊號也會從30 MHz升頻至920 MHz。避免注入訊號與原始振盪頻率差距過大而引起的不穩定現象。 本論文的雷達系統架構在頻率規劃方面具有顯著的優勢,因為可以使主要射頻元件的操作頻率落在常見的商用頻段,有現成產品可供使用加速開發時間。使用直接數位合成器進行頻率調變,能有效排除非線性掃描可能造成的幽靈目標,同時也可以自由地更改掃描頻寬,使系統更具彈性。所提出的雷達系統先對元件與子系統進行初步驗證,最後通過測試CW模式和FMCW模式,驗證該雷達系統能得到正確的都普勒資訊和測距的功能。 |
Abstract |
This thesis presents the application of self-injection locking technology in radar system by proposing a heterodyne self-injection-locked radar (HSILR). Compared to traditional radar systems, HSILR offers improved sensitivity, reduced clutter and environmental interference, and lower costs. The sensitivity of the radar system is significantly affected by the self-injection-locked oscillator (SILO)'s operating frequency. Directly lowering the center frequency of SILO would result in a decrease in radar system performance. Therefore, this thesis employs a frequency converter to lower the transmission frequency from 920 MHz to 30 MHz, allowing the utilization of high-frequency SILO's sensitivity to enhance the system's signal-to-noise ratio (SNR). The received signal is also up-converted to avoid instability caused by a large difference between the injection signal and the original oscillation frequency. The radar system architecture presented in this thesis posesses significant advantages in terms of frequency planning. It enables the operation of main RF components in commonly used commercial frequency bands, which facilitates the use of off-the-shelf products to accelerate development time. The use of a Direct Digital Synthesizer for frequency modulation effectively eliminates the possibility of ghost targets caused by nonlinear scanning and allows for flexible adjustments of the scanning bandwidth. The proposed radar system underwent initial validation of its components and sub-systems, and finally, it was tested in both Continuous Wave (CW) and Frequency Modulated Continuous Wave (FMCW) modes to verify its capabilities in obtaining accurate Doppler information and range measurement. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 x 第一章 序論 1 1.1 研究背景和動機 1 1.2 雷達系統介紹 2 1.2.1 連續波雷達系統 2 1.2.2 脈衝式超寬頻雷達系統 3 1.2.3 頻率調變續波雷達系統 4 1.2.4 高頻雷達系統 6 1.3 章節規劃 8 第二章 使用自我注入鎖定技術之雷達系統 9 2.1 自我注入鎖定技術應用於雷達系統 9 2.1.1 靈敏度與抗雜波表現 9 2.1.2 自我注入鎖定雷達原理 10 2.2 外差式自我注入鎖定雷達系統規劃。 12 2.3 即時性距離都普勒分析 16 2.4 外差式自我注入鎖定雷達元件參數 18 2.4.1 低壓差線性穩壓器介紹 21 2.4.2 儀表放大器介紹 23 第三章 外差式自我注入鎖定雷達系統量測 25 3.1 系統元件測試 25 3.1.1 自我注入鎖定震盪器 25 3.1.2 直接數位合成器 29 3.2 子系統測試 33 3.2.1 FCU開迴路系統測試 34 3.2.2 FCU閉迴路系統測試 36 3.2.3 非同步頻率解調器測試 38 3.3 連續波模式測試 42 3.4 頻率調變連續波模式測試 44 第四章 結論與未來展望 50 參考文獻 51 |
參考文獻 References |
[1] 林家豐,高家俊,董東璟,張育瑋(2005) "應用 X-band 雷達於分析海面流況之研究",第二十七屆海洋工程研討會論文集。 [2] 台灣海洋科技研究中心TORI [Online]. Available: https://www.tori.narl.org.tw/Default.aspx [3] 楊文昌,梁恩昱,王雅真,陳少華,胡建驊,李俊賢(2010) "利用高頻雷達監測台灣四周海域表層海流",第三十二屆海洋工程研討會論文集。 [4] D.G. Money, D.J. Emery, T.M. Blake, C.F. Clutterbuck and S.J. Ablett, “HF surface wave radar management techniques applied to surface craft detection,” in Proc. IEEE Int. Radar Conf., May. 2000, pp. 110-115. [5] M. Turley, “Impulsive noise rejection in HF radar using a linear prediction technique,” in Proc. IEEE Int. Radar Conf., Mar. 2003, pp. 358-362. [6] M. I. Skolnik, “CW and frequency-modulated radar,” in Introduction to Radar Systems, 3rd ed. New York, NY, USA: McGraw-Hill, 2001, pp. 68–100. [7] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with dc offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073-1079, May 2007. [8] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 567-570. [9] X. Gao and O. Boric-Lubecke, “Radius correction technique for Doppler radar noncontact periodic displacement measurement,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 621–631, Feb. 2017. [10] C.-C. Chou, W.-C. Lai, Y.-K. Hsiao, and H.-R. Chuang, “60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1635-1643, Mar. 2018. [11] T.-Y.-J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649-1659, Apr. 2013. [12] T.-Y. Huang, L. F. Hayward, and J. Lin, “Noninvasive measurement and analysis of laboratory rat’s cardiorespiratory movement,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 574-581, Feb. 2017. [13] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Kaband heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464–4471, Dec. 2006. [14] Schleicher, I. Nasr, A. Trasser and H. Schumacher, "IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring", IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076-2085, May 2013. [15] L. Ren, Y. S. Koo, Y. Wang and A. E. Fathy, "Noncontact heartbeat detection using UWB impulse Doppler radar", Proc. IEEE Topical Conf. Biomed. Wireless Technol. Netw. Sens. Syst. (BioWireleSS), pp. 1-3, Jan. 2015. [16] Changzhi Li et al., “A Review on Recent Progress of Portable Short-Range Noncontact Microwave Radar Systems,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692-1706, May. 2017. [17] L. Ren, L. Kong, F. Foroughian, H. Wang, P. Theilmann, and A. E. Fathy, “Comparison study of noncontact vital signs detection using a Doppler stepped-frequency continuous-wave radar and camera-based imaging photoplethysmography,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3519-3529, Sep. 2017. [18] M. Camponeschi, A. Bevilacqua, M. Tiebout, and A. Neviani, “A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 141-143, Mar. 2012. [19] Guochao Wang, Changzhan Gu, Takao Inoue, Member, and Changzhi Li, “A Hybrid FMCW-Interferometry Radar for Indoor Precise Positioning and Versatile Life Activity Monitoring,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2812-2822, Nov. 2014. [20] W.-C. Su et al., “Single conversion stepped-frequency continuous-wave radar using self-injection-locking technology,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, Jun. 2019, pp. 1–4. [21] S. Scheiblhofer, S. Schuster, and A. Stelzer, “High-speed FMCW radar frequency synthesizer with DDS based linearization,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 397–399, May 2007. [22] S. Balon, K. Mouthaan, C.-H. Heng, and Z. N. Chen, “A C-band FMCW SAR transmitter with 2-GHz bandwidth using injection-locking and synthetic bandwidth techniques,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 11, pp. 5095–5105, Nov. 2018. [23] L. Sevgi,“Stochastic modeling and simulation studies for the surface wave high frequency radars: problems and challenges” in Proc. IEEE Int. Radar Conf., Sep. 2003, pp. 602-607. [24] Anna Dzvonkovskaya, Hermann Rohling,“Fast-moving target observation using high-frequency surface wave radar,” in Proc. IEEE Int. Radar Conf., Oct. 2014, pp. 1-4. [25] J.F. Thomason,“Development of over-the-horizon radar in the United States” in Proc. IEEE Int. Radar Conf., Sep. 2003, pp. 599-601. [26] Anna Dzvonkovskaya, Klaus-Werner Gurgel, Hermann Rohling, Thomas Schlick,”Low power High Frequency Surface Wave Radar application for ship detection and tracking” in Proc. IEEE Int. Radar Conf., Sep. 2008, pp. 627-632. [27] 超視距雷達原理示意圖 [Online] Availabe: https://i2.kknews.cc/NBhes7Wu7zeUXzWyTG8OLTYqgMoL4G36bw/0.jpg [28] Duga-1雷達[Online].Available: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/DUGA_Radar_Array_near_Chernobyl%2C_Ukraine_2014.jpg/210px-DUGA_Radar_Array_near_Chernobyl%2C_Ukraine_2014.jpg [29] AN/TPS-71 [Online].Available: https://www.colmek.com/wp-content/uploads/ROTHR_USNavy_a-1024x807-1.jpg [30] Fu-Kang Wang, Chien-Jung Li, Chieh-Hsun Hsiao, Tzyy-Sheng Horng, Jenshan Lin, Kang-Chun Peng, Je-Kuan Jau, Jian-Yu Li , and Cheng-Chung Che, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn, vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [31] Fu-Kang Wang, Tzyy-Sheng Horng, Kang-Chun Peng, Je-Kuan Jau,Jian-Yu Li, Cheng-Chung Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011. [32] F.-K. Wang et al., “Review of self-injection-locked radar systems for noncontact detection of vital signs,” IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 4, no. 4, pp. 294–307, Dec. 2020. [33] A. Macaveiu, C. Nafornita, A. Isar, and I. Nafornita, “A method for building the range-Doppler map for multiple automotive radar targets,” in Proc. 11th Int. Symp. Electron. Telecommun., Nov. 2014, pp. 1–6. [34] C. Ding, H. Hong, Y. Zou, H. Chu, X. Zhu, F. Fioranelli, J. Le Kernec, and C. Li, “Continuous human motion recognition with a dynamic range-Doppler trajectory method based on FMCW radar,” IEEE Trans. Grosci. Remote Sens., vol. 57, no. 9, pp. 6821–6831, Sep. 2019. [35]線性穩壓器之基本架構圖 [Online] Available: https://resources.mrchip.cn/storage/images/20220415/5c8b90b235a816ea48ad917ebb63a277.png [36] HSIL雷達系統之3.3V LDO照片圖[Online] Available: https://5.imimg.com/data5/DB/SD/OB/GLADMIN-17188/analog-devices-adp7158cp-3-3evalz-power-management-development-kit-adp7158-500x500.png [37] 典型INA架構[Online] Available: https://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Op-Amp_Instrumentation_Amplifier.svg/400px-Op-Amp_Instrumentation_Amplifier.svg.png [38] Umar J. Lyles, Tino Copani, Bertan Bakkaloglu, and Sayfe Kiaei, “An Injection-Locked Frequency-Tracking "ΣΔ" Direct Digital Frequency Synthesizer” IEEE Trans. Circuits Syst., vol. 54, no. 5, May. 2007. [39] Xueyang Gen, Fa Foster Da, J. David Irwi, and Richard C. Jaege, “24-Bit 5.0 GHz Direct Digital Synthesizer RFIC With Direct Digital Modulations in 0.13 µm SiGeBiCMOS Technology” IEEE Trans. Circuits Syst., vol. 45, no. 5, May. 2010. [40] 黃韋智(2022) "高頻頻率調變連續波雷達子系統重現及改良",國立中山大學電機工程學系研究所碩士論文。 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-08-30 校外 Off-campus:開放下載的時間 available 2026-08-30 您的 IP(校外) 位址是 3.137.190.6 現在時間是 2024-11-22 論文校外開放下載的時間是 2026-08-30 Your IP address is 3.137.190.6 The current date is 2024-11-22 This thesis will be available to you on 2026-08-30. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-30 |
QR Code |