論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-08-31
校外 Off-campus:開放下載的時間 available 2027-08-31
論文名稱 Title |
主鏈有矽氧烷基的聚醯亞胺之合成與性質分析 Syntheses and Characterization of Polyimides Containing Siloxane Groups on the Main chain |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
56 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-08-25 |
繳交日期 Date of Submission |
2022-08-31 |
關鍵字 Keywords |
聚二甲基矽氧烷、聚醯亞胺、矽氫加成反應、醯亞胺化、疏水性 Polydimethylsiloxane (PDMS), Polyimide, Hydrosilylation reaction, Imidization, Hydrophobicity |
||
統計 Statistics |
本論文已被瀏覽 125 次,被下載 0 次 The thesis/dissertation has been browsed 125 times, has been downloaded 0 times. |
中文摘要 |
本實驗分成兩部分,第一部分為單體合成,利用矽氫加成反應將聚二甲基矽氧烷 (Polydimethylsiloxane,PDMS)與5-Norbornene-2,3-dicarboxylic anhydride (Nadic anhydride,ND)合成二酐類單體,接著分別與4,4'-Oxydianiline (ODA)、p-Phenylenediamine (PPD)反應形成具有醯亞胺官能基的二胺類單體(PDMS-ND-ODA與PDMS-ND-PPD)。透過FTIR及1H NMR分析鑑定其化學結構,確認合成成功。第二部分則將此兩種二胺單體各別與Pyromellitic dianhydride (PMDA)聚合成聚醯胺酸(Polyamic acid,PAA)後,再以熱醯亞胺化(thermal imidization)方式經過高溫環化脫水形成聚醯亞胺薄膜(PDMS-PI、PDMS-PI(P))。利用FTIR分析鑑定,確認製備成功。接著分別經由DSC及TGA檢測得知,PDMS-PI的玻璃轉移溫度(Tg)為173.72 ℃,重量損失5%與10%的裂解溫度(Td5、Td10)為470.76 ℃與491.54 ℃,殘留灰燼率(char yield)則為36.81 w.t%;而PDMS-PI(P)的Tg為296.73 ℃,Td5與Td10為446.48 ℃與480.18 ℃,char yield則為45.54 w.t%,皆說明具有良好的熱性質。而典型的PI薄膜由於主鏈不具有PDMS的結構,其熱性質表現較為優異;如PI的Td5、Td10與char yield為540.37 ℃、577.29 ℃與53.62 w.t%,PI(P)的則為484.88 ℃、570.77 ℃與57.62 w.t%。然而也因為具有低表面能和低極化率的PDMS結構的關係,PDMS-PI的水接觸角可從51.0 °明顯提升至109.3 °,而PDMS-PI(P)可從57.9 °增加到106.2 °,皆指出優異的疏水性。 |
Abstract |
In this study, we synthesized the dianhydride monomer (PDMS-ND) from polydimethylsiloxane (PDMS) prepared with 5-Norbornene-2,3-dicarboxylic anhydride (nadic anhydride) by hydrosilylation reaction; and PDMS-ND was synthesized with 4,4'-Oxydianiline (ODA) and p-Phenylenediamine (PPD), respectively, to obtain the PDMS-ND-ODA and PDMS-ND-PPD diamines with the imide groups. We have successfully synthesized them based on FTIR and 1H NMR spectroscopy analyses. Furthermore, they were polymerized with Pyromellitic dianhydride (PMDA) to obtain the polyamic acid (PAA), which is then subjected to form into the polyimide films by the thermal imidization. We have successfully prepared PDMS-PI and PDMS-PI(P) films based on FTIR analyses. Based on DSC and TGA analyses, the Tg, Td5, Td10, and the char yield values of PDMS-PI are 173.72 ℃, 470.76 ℃, 491.54 ℃ and 36.81 w.t%, respectively; and that of PDMS-PI(P) are 296.73 ℃, 446.48 ℃, 480.18 ℃ and 45.54 w.t%, respectively, indicating the good thermal properties. The typical PI film could exhibit better due to the absence of PDMS units on the main chain, which the Td5, Td10, and the char yield values of PI are 540.37 ℃, 577.29 ℃ and 53.62 w.t%, respectively; and that of PI(P) are 484.88 ℃, 570.77 ℃ and 57.62 w.t%, respectively. However, the water contact angles could be significantly enhanced from 51.0 ° to 109.3 ° for PDMS-PI and from 57.9 ° to 106.2 ° for PDMS-PI(P), respectively, due to the flexible PDMS structure with the low surface energy and low polarizability, revealing the excellent hydrophobicity. |
目次 Table of Contents |
論文審定書 i 致謝 iii 摘要 iv Abstract v Content vi Figure Captions viii Table Captions ix Scheme Captions x Chapter 1 Introduction and Literature Review 1 1-1 Polyimide 3 1-1.1 The reaction mechanism of polyimide 4 1-1.2 The preparation of polyimide 4 1-1.3 The imidization method of polyamic acid 4 1-1.4 The type of polyimide 5 1-1.5 The factors affecting the molecular weight of polyimide 5 1-1.6 The properties of polyimide 6 1-1.7 The application of polyimide 7 1-2 Polydimethylsiloxane (PDMS) 8 Chapter 2 Motivation and Objectives 10 Chapter 3 Experimental Section 11 3-1 Materials 11 3-2 Characterization 11 3-3 Syntheses 11 3-3.1 Synthesis of PDMS-ND 11 3-3.2 Synthesis of PDMS-ND-ODA 12 3-3.3 Synthesis of PDMS-ND-PPD 12 3-3.4 Synthesis of PDMS-PI-PAA 12 3-3.5 Synthesis of PDMS-PI(P)-PAA 13 3-3.6 Preparation of PDMS-PI Film 13 3-3.7 Preparation of PDMS-PI(P) Film 13 3-3.8 Synthesis of PI-PAA 14 3-3.9 Synthesis of PI(P)-PAA 14 3-3.10 Preparation of PI Film 14 3-3.11 Preparation of PI(P) Film 14 Chapter 4 Results and Discussion 16 4-1 Synthesis of PDMS-ND-ODA 16 4-2 Synthesis of PDMS-ND-PPD 19 4-3 Preparation of PDMS-PI Film 22 4-4 Preparation of PDMS-PI(P) Film 25 4-5 Thermal transitions analysis 28 4-6 Thermogravimetric analysis 33 4-7 Hydrophobicity analysis 37 Chapter 5 Conclusions 39 Chapter 6 Future Works 40 Chapter 7 References 41 |
參考文獻 References |
[1] Sezer Hicyilmaz, A. and Celik Bedeloglu, A., Applications of Polyimide Coatings: A Review, SN Applied Sciences, 2021, 3, 363. [2] Gouzman, I., Grossman, E., Verker, R., Atar, N., Bolker, A., and Eliaz, N., Advances in Polyimide‐Based Materials for Space Applications, Advanced Materials, 2019, 31, 1807738. [3] Ji, D., Li, T., Hu, W., and Fuchs, H., Recent Progress in Aromatic Polyimide Dielectrics for Organic Electronic Devices and Circuits, Advanced Materials, 2019, 31, 1806070. [4] Ma, P., Dai, C., Wang, H., Li, Z., Liu, H., Li, W., and Yang, C., A Review on High Temperature Resistant Polyimide Films: Heterocyclic Structures and Nanocomposites, Composites Communications, 2019, 16, 84-93. [5] Zaaba, N. F., Ismail, H. and Saeed, A. M., A Review: A Review: Metal Filled Thermoplastic Composites, Polymer-Plastics Technology and Materials, 2021, 60, 1033-1050. [6] Bogert, M. T. and Renshaw, R. R., 4-Amino-0-Phthalic Acid and Some of Its Derivatives, Journal of the American Chemical Society, 1908, 30, 1135-1144. [7] Joyce, J. R. M. and Richard, R. J., Diaminotriazine-Diamine Condensation Polymers and Preparation of Same, U.S. Patent 2723244, 1955. [8] Sroog, C. E., Endrey, A. L., Abramo, S. V., Berr, C. E., Edwards, W. M., and Olivier, K. L., Aromatic Polypyromellitimides from Aromatic Polyamic Acids, Journal of Polymer Science Part A: General Papers, 1965, 3, 1373-1390. [9] Hasegawa, M. and Horie, K., Photophysics, Photochemistry, and Optical Properties of Polyimides, Progress in Polymer Science, 2001, 26, 259-335. [10] Ardashnikov, A. Y., Kardash, I. Y., and Pravednikov, A. N., The Nature of the Equilibrium in the Reaction of Aromatic Anhydrides with Aromatic Amines and Its Role in Synthesis of Polyimides, Polymer Science U.S.S.R., 1971, 13, 2092-2100. [11] Budy, S. M., Hall, J. D., and Son, D. Y., Polyarylene Polyimides with Hydrocarbon and Semi-Fluorinated Backbones: Synthesis, Characterization, and Properties, Polymer Chemistry, 2020, 11, 6273-6280. [12] Liaw, D.-J., Wang, K.-L., Huang, Y.-C., Lee, K.-R., Lai, J.-Y., and Ha, C.-S., Advanced Polyimide Materials: Syntheses, Physical Properties and Applications, Progress in Polymer Science, 2012, 37, 907-974. [13] Kim, Y. J., Glass, T. E., Lyle, G. D., and McGrath, J. E., Kinetic and Mechanistic Investigations of the Formation of Polyimides under Homogeneous Conditions, Macromolecules, 1993, 26, 1344-1358. [14] Shin, T. J. and Ree, M., Thermal Imidization and Structural Evolution of Thin Films of Poly(4,4‘-Oxydiphenylene p-Pyromellitamic Diethyl Ester), The Journal of Physical Chemistry B, 2007, 111, 13894-13900. [15] Han, H., Gryte, C. C., and Ree, M., Water Diffusion and Sorption in Films of High-Performance Poly(4,4′-Oxydiphenylene Pyromellitimide): Effects of Humidity, Imidization History and Film Thickness, Polymer, 1995, 36, 1663-1672. [16] Volksen, W., Condensation Polyimides: Synthesis, Solution Behavior, and Imidization Characteristics, Advances in Polymer Science, 2005, 117, 111-164. [17] Liaw, D.-J., Liaw, B.-Y., and Yu, C.-W., Synthesis and Characterization of New Organosoluble Polyimides Based on Flexible Diamine, Polymer, 2001, 42, 5175-5179. [18] Kim, I.-C., Lee, K.-H., and Tak, T.-M., Synthesis and Asymmetric Nanofiltration Membrane Performance of Heterogeneously Sulfonated Aromatic Polyimides, Journal of Applied Polymer Science, 2003, 89, 2483-2489. [19] Qiu, Z. and Zhang, S., Synthesis and Properties of Organosoluble Polyimides Based on 2,2′-Diphenoxy-4,4′,5,5′-Biphenyltetracarboxylic Dianhydride, Polymer, 2005, 46, 1693-1700. [20] Bower, G. M. and Frost, L. W., Aromatic Polyimides, Journal of Polymer Science Part A: General Papers, 1963, 1, 3135-3150. [21] Hamciuc, E., Hamciuc, C., Cazacu, M., Ignat, M., and Zarnescu, G., Polyimide–Polydimethylsiloxane Copolymers Containing Nitrile Groups, European Polymer Journal, 2009, 45, 182-190. [22] Zhuang, Y. B., Seong, J. G., and Lee, Y. M., Polyimides Containing Aliphatic/Alicyclic Segments in the Main Chains, Progress in Polymer Science, 2019, 92, 35-88. [23] Damaceanu, M.-D., Bacosca, I., Bruma, M., Robison, J., and Rusanov, A., Heterocyclic Polyimides Containing Siloxane Groups in the Main Chain, Polymer International, 2009, 58, 1041-1050. [24] Qiu, J., Xu, S., Liu, N., Wei, K., Li, L., and Zheng, S., Organic-Inorganic Polyimide Nanocomposites Containing a Tetrafunctional Polyhedral Oligomeric Silsesquioxane Amine: Synthesis, Morphology and Thermomechanical Properties, Polymer International, 2018, 67, 301-312. [25] Tan, X. M. and Rodrigue, D., A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene, Polymers, 2019, 11, 1310. [26] Zaman, Q., Zia, K. M., Zuber, M., Mabkhot, Y. N., Almalki, F., and Hadda, T. B., A Comprehensive Review on Synthesis, Characterization, and Applications of Polydimethylsiloxane and Copolymers, International Journal of Plastics Technology, 2019, 23, 261-282. [27] Cui, X., Zhu, G., Pan, Y., Shao, Q., Zhao, C. (xinxin), Dong, M., Zhang, Y., and Guo, Z., Polydimethylsiloxane-Titania Nanocomposite Coating: Fabrication and Corrosion Resistance, Polymer, 2018, 138, 203-210. [28] Sasi kumar, R., Padmanathan, N., and Alagar, M., Design of Hydrophobic Polydimethylsiloxane and Polybenzoxazine Hybrids for Interlayer Low K Dielectrics, New Journal of Chemistry, 2015, 39, 3995-4008. [29] Seethapathy, S. and Górecki, T., Applications of Polydimethylsiloxane in Analytical Chemistry: A Review, Analytica Chimica Acta, 2012, 750, 48-62. [30] Simpson, T. R. E., Parbhoo, B., and Keddie, J. L., The Dependence of the Rate of Crosslinking in Poly(Dimethyl Siloxane) on the Thickness of Coatings, Polymer, 2003, 44, 4829-4838. [31] Xi, K., Meng, Z., Heng, L., Ge, R., He, H., Yu, X., and Jia, X., Polyimide-Polydimethylsiloxane Copolymers for Low-Dielectric-Constant and Moisture-Resistance Applications, Journal of Applied Polymer Science, 2009, 113, 1633-1641. [32] Gurr, P. A., Scofield, J. M. P., Kim, J., Fu, Q., Kentish, S. E., and Qiao, G. G., Polyimide Polydimethylsiloxane Triblock Copolymers for Thin Film Composite Gas Separation Membranes, Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 3372-3382. [33] You, H., Hossain, I., and Kim, T.-H., Piperazinium-Mediated Crosslinked Polyimide-Polydimethylsiloxane (PI-PDMS) Copolymer Membranes: The Effect of PDMS Content on CO2 Separation, RSC Advances, 2018, 8, 1328-1336. [34] Hamciuc, C., Lisa, G., Hamciuc, E., and Tudorachi, N., Thermal Decomposition Study of Some Polyimide-Polydimethylsiloxane Copolymers, Journal of Analytical and Applied Pyrolysis, 2018, 129, 204-214. [35] Lv, P., Dong, Z., Dai, X., and Qiu, X., Flexible Polydimethylsiloxane-Based Porous Polyimide Films with an Ultralow Dielectric Constant and Remarkable Water Resistance, ACS Applied Polymer Materials, 2019, 1, 2597-2605. [36] Park, J., Gaines, K. E., Jheng, L.-C., Riffle, J. S., Mecham, S. J., McGrath, J. E., Park, H. B., Paul, D. R., and Freeman, B. D., Characterization and Gas Transport Properties of UV-Irradiated Polydimethylsiloxane (PDMS)-Containing Polyimide Copolymer Membranes, Polymer, 2020, 210, 122966. [37] Chen, W., Chen, W., Zhang, B., Yang, S., and Liu, C.-Y., Thermal Imidization Process of Polyimide Film: Interplay between Solvent Evaporation and Imidization, Polymer, 2017, 109, 205-215. [38] Choi, J.-Y., Jin, S.-W., Kim, D.-M., Song, I.-H., Nam, K.-N., Park, H.-J., and Chung, C.-M., Enhancement of the Mechanical Properties of Polyimide Film by Microwave Irradiation, Polymers, 2019, 11, 477. [39] Kripotou, S., Pissis, P., Bershtein, V. A., Sysel, P., and Hobzova, R., Dielectric Studies of Molecular Mobility in Hybrid Polyimide–Poly(Dimethylsiloxane) Networks, Polymer, 2003, 44, 2781-2791. [40] Ardhyananta, H., Kawauchi, T., Ismail, H., and Takeichi, T., Effect of Pendant Group of Polysiloxanes on the Thermal and Mechanical Properties of Polybenzoxazine Hybrids, Polymer, 2009, 50, 5959-5969. [41] Wen, J. and Wilkes, G. L., Organic/Inorganic Hybrid Network Materials by the Sol−Gel Approach, Chemistry of Materials, 1996, 8, 1667-1681. [42] Sroog, C. E., Polyimides, Progress in Polymer Science, 1991, 16, 561-694. [43] Morgan, J., Chen, T., Hayes, R., Dickie, T., Urlich, T., and Brook, M. A., Facile Synthesis of Dendron-Branched Silicone Polymers, Polymer Chemistry, 2017, 8, 2743-2746. [44] Wang, Y., Cai, Y., Zhang, H., Zhou, J., Zhou, S., Chen, Y., Liang, M., and Zou, H., Mechanical and Thermal Degradation Behavior of High-Performance PDMS Elastomer Based on Epoxy/Silicone Hybrid Network, Polymer, 2021, 236, 124299. [45] Kim, S. I., Pyo, S. M., and Ree, M., Investigation of Glass Transition Behaviors in Poly(Amic Acid) Precursors of Semiflexible Polyimides by Oscillating Differential Scanning Calorimetry, Macromolecules, 1997, 30, 7890-7897. [46] Chang, J.-H., Park, K. M., Lee, S.-M., and Oh, J. B., Two-Step Thermal Conversion from Poly(Amic Acid) to Polybenzoxazole via Polyimide: Their Thermal and Mechanical Properties, Journal of Polymer Science Part B: Polymer Physics, 2000, 38, 2537-2545. [47] Yang, K. S., Edie, D. D., Lim, D. Y., Kim, Y. M., and Choi, Y. O., Preparation of Carbon Fiber Web from Electrostatic Spinning of PMDA-ODA Poly(Amic Acid) Solution, Carbon, 2003, 41, 2039-2046. [48] Schab-Balcerzak, E., Skorus, B., Siwy, M., Janeczek, H., Sobolewska, A., Konieczkowska, J., and Wiacek, M., Characterization of Poly(Amic Acid)s and Resulting Polyimides Bearing Azobenzene Moieties Including Investigations of Thermal Imidization Kinetics and Photoinduced Anisotropy, Polymer International, 2015, 64, 76-87. [49] Srividhya, M. and Reddy, B. S. R., Soluble Rigid Poly(Imide-Siloxane)s: Synthesis, Characterization, and Structure-Property Relations, Journal of Applied Polymer Science, 2008, 109, 565-576. [50] Spontak, R. J. and Williams, M. C., Microstructural and Bulk Characterization of Two Poly(Siloxane-Imide) Multiblock Copolymers, Journal of Applied Polymer Science, 1989, 38, 1607-1640. [51] Chen, X., Gardella, J. A., Jr., Ho, T. and Wynne, K. J., Surface Composition of a Series of Dimethylsiloxane-Urea-Urethane Segmented Copolymers Studied by Electron Spectroscopy for Chemical Analysis, Macromolecules, 1995, 28, 1635-1642. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-08-31 校外 Off-campus:開放下載的時間 available 2027-08-31 您的 IP(校外) 位址是 216.73.216.147 現在時間是 2025-06-13 論文校外開放下載的時間是 2027-08-31 Your IP address is 216.73.216.147 The current date is 2025-06-13 This thesis will be available to you on 2027-08-31. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-08-31 |
QR Code |