論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-09-01
校外 Off-campus:開放下載的時間 available 2027-09-01
論文名稱 Title |
不同海洋環境之顆粒態有機碳與釷-234 之比例 Ratios of POC to Th-234 in different marine environments |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
67 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-18 |
繳交日期 Date of Submission |
2024-09-01 |
關鍵字 Keywords |
釷-234/鈾-238不平衡法、沉積物收集器、顆粒態有機碳通量、釷-234、放射性示蹤劑 Th-234/U-238 disequilibrium, sediment trap, POC flux, thorium-234, radioactive tracer |
||
統計 Statistics |
本論文已被瀏覽 23 次,被下載 0 次 The thesis/dissertation has been browsed 23 times, has been downloaded 0 times. |
中文摘要 |
海洋碳循環與氣候變遷之間存在錯綜複雜的關聯,顆粒有機碳輸出是碳封存的重要途徑,儘管利用沉積物收集器收集水層中特定深度的沉降顆粒是一種最直觀的測量方法,但由於時間與空間分佈限制,離散的觀測結果可能無法充分解釋序列變化。釷鈾不平衡法利用顆粒活性放射性核種—釷-234 (Th-234) 作為顆粒有機碳的示蹤劑,被廣泛運用於估算顆粒有機碳輸出通量 (particulate organic carbon flux,POC flux = [POC/Th-234] × Th-234 flux),然而這個方法之主要參數 POC/Th-234存在很大的變異性,導致碳通量測量結果常偏離沉積物收集器測得的資料。本研究於臺灣西南沿海、南海北部及西北太平洋實際比較兩種方法得到的數據,並探討如何更有效利用Th-234作為顆粒態有機碳示蹤劑。漂浮式沉積物收集器測量POC flux實測值 (Mean ± SE) 為59.3 ± 2.8 (29.7–131.1)、56.1 ± 4.2 (33.4–99.8)、58.1 ± 7.2 (39.5–96.7) (mgC m-2 d-1),而釷鈾不平衡法得到POC flux分別是64.8 ± 3.5 (22.5–144.2)、57.4 ± 4.1 (36.2–116.0)、60.2 ± 7.3 (31.8–99.0),釷鈾不平衡法估算的碳通量約為實測值的1.1 ± 0.3倍,以兩種方法測得之平均POC flux在三個海域無顯著統計差異 (p > 0.05),但實際上個別數值的最大差異達到1.7–2.4倍,顯示當Th-234 flux及POC/Th-234直接使用沉積物收集器的沉降顆粒測量時,此方法可用於大尺度估算碳通量。三個不同海洋環境的顆粒態有機碳與Th-234的比例具有顯著差異 (p < 0.001),平均POC/Th-234 (μmolC dpm-1) 為1.95 ± 0.08、2.73 ± 0.16、3.47 ± 0.29,西北太平洋的比值高於南海北部,而當南海北部偏向黑潮水團性質時,也傾向於測得較高的POC/Th-234比值。不同海洋環境之間POC/Th-234比值的變異,主要是由於Th-234活度的差異所造成。 |
Abstract |
The ocean carbon cycle is intricately linked to climate change, with biological carbon pump (known as particulate organic carbon (POC) export) being a critical pathway for carbon sequestration. Sediment traps are the most straightforward method for collecting sinking particles at specific depths in the water column, but the limits of temporal and spatial coverage mean that discrete observational results may not fully capture sequential changes. The thorium-234/uranium-238 disequilibrium method, which uses the particle-reactive radionuclide thorium-234 as a tracer for POC, is widely used to estimate POC flux (= [POC/Th-234] × Th-234 flux). However, due to significant variability in the POC/Th-234 ratio, a key parameter in this method, leading to POC flux measurements often differ from sediment trap data. In this study, we compare data obtained from both methods in the southwestern coast of Taiwan (SWCT), the northern South China Sea (NSCS), and the northwest Pacific Ocean (NWPO), to improve the utilization of thorium-234 as a tracer for POC flux estimation. Using sediment traps, POC flux (Mean ± SE) were 59.3 ± 2.8 (29.7–131.1), 56.1 ± 4.2 (33.4–99.8), 58.1 ± 7.2 (39.5–96.7) (mgC m-2 d-1) in SWCT, NSCS and NWPO, respectively, while the thorium-uranium disequilibrium method yielded POC flux values of 64.8 ± 3.5 (22.5–144.2), 57.4 ± 4.1 (36.2–116.0), 60.2 ± 7.3 (31.8–99.0). The POC flux estimated by the thorium-uranium disequilibrium method was approximately 1.1 ± 0.3 times the value obtained from sediment traps. While there was not statistically significant difference in mean POC flux between the three regions (p > 0.05), the distinct values could be as large as 1.7 to 2.4 times, indicating that the method can be used for large-scale POC flux estimation when Th-234 flux and POC/Th-234 are measured directly from sediment traps. The ratio of POC to thorium-234 varies significantly among the three different marine environments (p < 0.001), with mean POC/Th-234 (μmolC dpm-1) of 1.95 ± 0.08, 2.73 ± 0.16 and 3.47 ± 0.29, respectively. The NWPO exhibits higher ratios than the NSCS, and the latter showing higher ratios when influenced by the Kuroshio intrusion into the South China Sea. These variations in POC/Th-234 ratios among different oceanic environments are primarily due to differences in thorium-234 activity. |
目次 Table of Contents |
論文審定書 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 vii 第一章 前言 1 1-1 藍碳 1 1-2 碳通量 2 1-3 研究現況 4 1-4 研究目的 7 第二章 材料與方法 8 2-1 研究區域 8 2-2 採樣方法 8 2-3 樣品分析 9 2-3-1 釷-234活度 (Thorium-234 Activity) 9 2-3-2 顆粒態有機碳 (Particulate Organic Carbon,POC) 9 2-4 資料處理 10 2-4-1 釷鈾不平衡法 10 2-4-2 Martin curve 10 2-4-3 海洋聖嬰指數 (Oceanic Niño Index,ONI) 11 2-5 統計敘述與檢定 11 第三章 結果與討論 13 3-1 不同海洋環境的顆粒態有機碳通量與釷-234通量 13 3-2 顆粒態有機碳通量估算 14 3-2-1 沉積物收集器與釷鈾不平衡法之比較 14 3-2-2 顆粒態有機碳通量垂直衰變率 16 3-3 顆粒態有機碳通量與釷-234通量隨收集時間之變化 17 3-4 海洋環境變化下顆粒態有機碳通量與釷-234通量之比例變化 18 3-4-1 季節至年間變異與氣候震盪之影響 18 3-4-2 顆粒有機碳通量估算之不確定性討論 21 第四章 結論 23 |
參考文獻 References |
洪慶章,2017,小生物大貢獻。自然科學簡訊,29(3),88-92。 陳鎮東,2001,南海海洋學。國立編譯館,共506頁。 Alonso-Gonzalez, I. J., Aristegui, J., Lee, C., Sanchez-Vidal, A., Calafat, A., Fabres, J., Sangra, P., & Mason, E. (2013). Carbon dynamics within cyclonic eddies: Insights from a biomarker study. PLoS One, 8(12), e82447. https://doi.org/10.1371/journal.pone.0082447 Alonso‐González, I. J., Arístegui, J., Lee, C., Sanchez‐Vidal, A., Calafat, A., Fabrés, J., Sangrá, P., Masqué, P., Hernández‐Guerra, A., & Benítez‐Barrios, V. (2010). Role of slowly settling particles in the ocean carbon cycle. Geophysical Research Letters, 37(13). https://doi.org/10.1029/2010gl043827 Archer, D. (2003). Biological fluxes in the ocean and atmospheric pCO2. Treatise on Geochemistry, 6, 625. Azetsu-Scott, K., & Niven, S. E. H. (2005). The role of transparent exopolymer particles (TEP) in the transport of 234Th in coastal water during a spring bloom. Continental Shelf Research, 25(9), 1133-1141. https://doi.org/10.1016/j.csr.2004.12.013 Bach, L. T., Stange, P., Taucher, J., Achterberg, E. P., Algueró‐Muñiz, M., Horn, H., Esposito, M., & Riebesell, U. (2019). The influence of plankton community structure on sinking velocity and remineralization rate of marine aggregates. Global Biogeochemical Cycles, 33(8), 971-994. https://doi.org/10.1029/2019gb006256 Bacon, M., Cochran, J., Hirschberg, D., Hammar, T., & Fleer, A. (1996). Export flux of carbon at the equator during the EqPac time-series cruises estimated from 234Th measurements. Deep Sea Research Part II: Topical Studies in Oceanography, 43(4-6), 1133-1153. Bhat, S. G., Krishnaswamy, S., Lal, D., Rama, & Moore, W. S. (1968). 234Th/238U ratios in the ocean. Earth and Planetary Science Letters, 5, 483–491. https://doi.org/10.1016/S0012-821X(68)80083-4 Bopp, L., Aumont, O., Cadule, P., Alvain, S., & Gehlen, M. (2005). Response of diatoms distribution to global warming and potential implications: A global model study. Geophysical Research Letters, 32(19). https://doi.org/10.1029/2005gl023653 Buesseler, K. O., Bacon, M. P., Cochran, J. K., & Livingston, H. D. (1992). Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th: 238U disequilibria. Deep Sea Research Part A. Oceanographic Research Papers, 39(7-8), 1115-1137. Buesseler, K. O., Benitez-Nelson, C. R., Moran, S. B., Burd, A., Charette, M., Cochran, J. K., Coppola, L., Fisher, N. S., Fowler, S. W., Gardner, W. D., Guo, L. D., Gustafsson, Ö., Lamborg, C., Masque, P., Miquel, J. C., Passow, U., Santschi, P. H., Savoye, N., Stewart, G., & Trull, T. (2006). An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Marine Chemistry, 100(3-4), 213-233. https://doi.org/10.1016/j.marchem.2005.10.013 Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W., Bidigare, R. R., Bishop, J. K., Casciotti, K. L., Dehairs, F., & Elskens, M. (2007). Revisiting carbon flux through the ocean's twilight zone. Science, 316(5824), 567-570. Buesseler, K. O., Pike, S., Maiti, K., Lamborg, C. H., Siegel, D. A., & Trull, T. W. (2009). Thorium-234 as a tracer of spatial, temporal and vertical variability in particle flux in the North Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 56(6), 1143-1167. https://doi.org/10.1016/j.dsr.2009.02.003 Burd, A. B., Jackson, G. A., & Moran, S. B. (2007). The role of the particle size spectrum in estimating POC fluxes from disequilibrium. Deep Sea Research Part I: Oceanographic Research Papers, 54(6), 897-918. https://doi.org/10.1016/j.dsr.2007.03.006 Chen, K. S., Hung, C. C., Gong, G. C., Chou, W. C., Chung, C. C., Shih, Y. Y., & Wang, C. C. (2013). Enhanced POC export in the oligotrophic northwest Pacific Ocean after extreme weather events. Geophysical Research Letters, 40(21), 5728-5734. https://doi.org/10.1002/2013gl058300 DeVries, T. (2022). The ocean carbon cycle. Annual Review of Environment and Resources, 47(1), 317-341. https://doi.org/10.1146/annurev-environ-120920-111307 Gardner, W. D. (1997). The flux of particles to the deep sea: Methods, measurements, and mechanisms. Oceanography, 10(3), 116–121. https://doi.org/10.5670/oceanog.1997.03 Gardner, W. D. (2000). Sediment trap sampling in surface waters. Cambridge University Press, Cambridge. Giering, S. L., Sanders, R., Lampitt, R. S., Anderson, T. R., Tamburini, C., Boutrif, M., Zubkov, M. V., Marsay, C. M., Henson, S. A., Saw, K., Cook, K., & Mayor, D. J. (2014). Reconciliation of the carbon budget in the ocean's twilight zone. Nature, 507(7493), 480-483. https://doi.org/10.1038/nature13123 Giering, S. L. C., Sanders, R., Martin, A. P., Henson, S. A., Riley, J. S., Marsay, C. M., & Johns, D. G. (2017). Particle flux in the oceans: Challenging the steady state assumption. Global Biogeochemical Cycles, 31(1), 159-171. https://doi.org/10.1002/2016gb005424 Gloege, L., McKinley, G. A., Mouw, C. B., & Ciochetto, A. B. (2017). Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Global Biogeochemical Cycles, 31(8), 1192-1215. https://doi.org/10.1002/2016GB005535 Hedges, J. I., Lee, C., Wakeham, S. G., Hernes, P. J., & Peterson, M. L. (1993). Effects of poisons and preservatives on the fluxes and elemental compositions of sediment trap materials. Journal of Marine Research, 51(3), 651-668. https://doi.org/10.1357/0022240933223990 Henson, S. A., Laufkötter, C., Leung, S., Giering, S. L. C., Palevsky, H. I., & Cavan, E. L. (2022). Uncertain response of ocean biological carbon export in a changing world. Nature Geoscience, 15(4), 248-254. https://doi.org/10.1038/s41561-022-00927-0 Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne, F., & Quartly, G. D. (2011). A reduced estimate of the strength of the ocean's biological carbon pump. Geophysical Research Letters, 38(4), L04606. https://doi.org/10.1029/2011gl046735 Henson, S. A., Sanders, R., & Madsen, E. (2012). Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Global Biogeochemical Cycles, 26(GB1028). https://doi.org/10.1029/2011GB004099 Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H.-M. (2017). Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30(20), 8179-8205. Hung, C.-C., & Gong, G.-C. (2010). POC/234Th ratios in particles collected in sediment traps in the northern South China Sea. Estuarine, Coastal and Shelf Science, 88(3), 303-310. https://doi.org/10.1016/j.ecss.2010.04.008 Hung, C.-C., Gong, G.-C., & Santschi, P. H. (2012). 234Th in different size classes of sediment trap collected particles from the Northwestern Pacific Ocean. Geochimica et Cosmochimica Acta, 91, 60-74. https://doi.org/10.1016/j.gca.2012.05.017 Le Moigne, F. A. C. (2019). Pathways of organic carbon downward transport by the oceanic biological carbon pump. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00634 Li, D., Chou, W. C., Shih, Y. Y., Chen, G. Y., Chang, Y., Chow, C. H., Lin, T. Y., & Hung, C. C. (2018). Elevated particulate organic carbon export flux induced by internal waves in the oligotrophic northern South China Sea. Scientific Reports, 8(1), 2042. https://doi.org/10.1038/s41598-018-20184-9 Li, H., Wiesner, M. G., Chen, J., Ling, Z., Zhang, J., & Ran, L. (2017). Long-term variation of mesopelagic biogenic flux in the central South China Sea: Impact of monsoonal seasonality and mesoscale eddy. Deep Sea Research Part I: Oceanographic Research Papers, 126, 62-72. https://doi.org/10.1016/j.dsr.2017.05.012 Li, H., Zhang, J., Xuan, J., Wu, Z., Ran, L., Wiesner, M. G., & Chen, J. (2022). Asymmetric response of the biological carbon pump to the ENSO in the South China Sea. Geophysical Research Letters, 49(2). https://doi.org/10.1029/2021gl095254 Li, T., Bai, Y., He, X., Chen, X., Chen, C.-T., Tao, B., Pan, D., & Zhang, X. (2018). The relationship between POC export efficiency and primary production: Opposite on the shelf and basin of the Northern South China Sea. Sustainability, 10(10). https://doi.org/10.3390/su10103634 Li, Y., Strapasson, A., & Rojas, O. (2020). Assessment of El Niño and La Niña impacts on China: Enhancing the early warning system on food and agriculture. Weather and Climate Extremes, 27. https://doi.org/10.1016/j.wace.2019.100208 Lui, H.-K., Chen, C.-T. A., Hou, W.-P., Liau, J.-M., Chou, W.-C., Wang, Y.-L., Wu, C.-R., Lee, J., Hsin, Y.-C., & Choi, Y.-Y. (2020). Intrusion of Kuroshio helps to diminish coastal hypoxia in the coast of Northern South China Sea. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.565952 Lui, H.-K., Chen, K.-Y., Chen, C.-T., Wang, B.-S., Lin, H.-L., Ho, S.-H., Tseng, C.-J., Yang, Y., & Chan, J.-W. (2018). Physical forcing-driven productivity and sediment flux to the deep basin of Northern South China Sea: A decadal time series study. Sustainability, 10(4). https://doi.org/10.3390/su10040971 Lutz, M., Dunbar, R., & Caldeira, K. (2002). Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochemical Cycles, 16(3). https://doi.org/10.1029/2000gb001383 Maiti, K., Benitez‐Nelson, C. R., & Buesseler, K. O. (2010). Insights into particle formation and remineralization using the short‐lived radionuclide, Thoruim‐234. Geophysical Research Letters, 37(15). https://doi.org/10.1029/2010gl044063 Martin, J. H., Knauer, G. A., Karl, D. M., & Broenkow, W. W. (1987). VERTEX: Carbon cycling in the northeast Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 34(2), 267-285. McNeil, B. I., & Matear, R. J. (2006). Projected climate change impact on oceanic acidification. Carbon Balance and Management 1, 2. https://doi.org/10.1186/1750-0680-1-2 Murray, J. W., Young, J., Newton, J., Dunne, J., Chapin, T., Paul, B., & McCarthy, J. J. (1996). Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-234Th approach. Deep Sea Research Part II: Topical Studies in Oceanography, 43(4-6), 1095-1132. Nan, F., Xue, H., & Yu, F. (2015). Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography, 137, 314-333. https://doi.org/10.1016/j.pocean.2014.05.012 Nguyen, T. T. H., Zakem, E. J., Ebrahimi, A., Schwartzman, J., Caglar, T., Amarnath, K., Alcolombri, U., Peaudecerf, F. J., Hwa, T., Stocker, R., Cordero, O. X., & Levine, N. M. (2022). Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nature Communications, 13(1), 1657. https://doi.org/10.1038/s41467-022-29297-2 Owens, S. A., Buesseler, K. O., & Sims, K. W. W. (2011). Re-evaluating the 238U-salinity relationship in seawater: Implications for the 238U-234Th disequilibrium method. Marine Chemistry, 127(1-4), 31-39. https://doi.org/10.1016/j.marchem.2011.07.005 Papadopoulos, A., Christofides, G., Koroneos, A., Stoulos, S., & Papastefanou, C. (2013). Radioactive secular equilibrium in 238U and 232Th series in granitoids from Greece. Applied Radiation and Isotopes, 75, 95-104. https://doi.org/10.1016/j.apradiso.2013.02.006 Puigcorbé, V., Masqué, P., & Le Moigne, F. A. C. (2020). Global database of ratios of particulate organic carbon to thorium-234 in the ocean: Improving estimates of the biological carbon pump. Earth System Science Data, 12(2), 1267-1285. https://doi.org/10.5194/essd-12-1267-2020 Qu, T. D., Kim, Y. Y., Yaremchuk, M., Tozuka, T., Ishida, A., & Yamagata, T. (2004). Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? Journal of Climate, 17(18), 3644-3657. Rivero-Calle, S., Bendif, E. M., & Young, J. R. (2015). Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science, 350(6262), 1533-1537. https://doi.org/10.1126/science.aaa8026 Santschi, P. H., Hung, C. C., Schultz, G., Alvarado‐Quiroz, N., Guo, L., Pinckney, J., & Walsh, I. (2003). Control of acid polysaccharide production and 234Th and POC export fluxes by marine organisms. Geophysical Research Letters, 30(2). https://doi.org/10.1029/2002gl016046 Shen, J., Jiao, N., Dai, M., Wang, H., Qiu, G., Chen, J., Li, H., Kao, S. J., Yang, J. Y. T., Cai, P., Zhou, K., Yang, W., Zhu, Y., Liu, Z., Chen, M., Zuo, Z., Gaye, B., Wiesner, M. G., & Zhang, Y. (2020). Laterally transported particles from margins serve as a major carbon and energy source for dark ocean ecosystems. Geophysical Research Letters, 47(18). https://doi.org/10.1029/2020gl088971 Shih, Y.-Y., Hung, C.-C., Huang, S.-Y., Muller, F. L. L., & Chen, Y.-H. (2020). Biogeochemical variability of the upper ocean response to typhoons and storms in the Northern South China Sea. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00151 Shih, Y. Y., Hung, C. C., Gong, G. C., Chung, W. C., Wang, Y. H., Lee, I. H., Chen, K. S., & Ho, C. Y. (2015). Enhanced particulate organic carbon export at eddy edges in the oligotrophic Western North Pacific Ocean. PLoS One, 10(7), e0131538. https://doi.org/10.1371/journal.pone.0131538 Shih, Y. Y., Hung, C. C., Tuo, S. h., Shao, H. J., Chow, C. H., Muller, F. L. L., & Cai, Y. H. (2020). The impact of eddies on nutrient supply, diatom biomass and carbon export in the Northern South China Sea. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.537332 Shih, Y. Y., Lin, H. H., Li, D., Hsieh, H. H., Hung, C. C., & Chen, C. A. (2019). Elevated carbon flux in deep waters of the South China Sea. Scientific Reports, 9(1), 1496. https://doi.org/10.1038/s41598-018-37726-w Sun, P., Wang, Y., Huang, X., Huang, B., & Wang, L. (2022). Water masses and their associated temperature and cross-domain biotic factors co-shape upwelling microbial communities. Water Research, 215, 118274. https://doi.org/10.1016/j.watres.2022.118274 Sun, P., Zhang, S., Wang, Y., & Huang, B. (2021). Biogeographic role of the Kuroshio Current intrusion in the microzooplankton community in the boundary zone of the Northern South China Sea. Microorganisms, 9(5). https://doi.org/10.3390/microorganisms9051104 Tsunogai, S. (1976). Vertical flux of organic materials estimated from Th-234 in the ocean. In Book of abstracts, Joint Oceanographic Assembly (pp. 156). Edinburgh. van der Loeff, M. M. R., Buesseler, K., Bathmann, U., Hense, I., & Andrews, J. (2002). Comparison of carbon and opal export rates between summer and spring bloom periods in the region of the Antarctic Polar Front, SE Atlantic. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 49(18), 3849-3869. Xie, R. C., Le Moigne, F. A. C., Rapp, I., Lüdke, J., Gasser, B., Dengler, M., Liebetrau, V., & Achterberg, E. P. (2020). Effects of 238U variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru. Biogeosciences, 17(19), 4919-4936. https://doi.org/10.5194/bg-17-4919-2020 Xiu, P., Chai, F., Shi, L., Xue, H., & Chao, Y. (2010). A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans, 115(C3). https://doi.org/10.1029/2009jc005657 Yan, Y., Qi, Y., & Zhou, W. (2010). Interannual heat content variability in the South China Sea and its response to ENSO. Dynamics of Atmospheres and Oceans, 50(3), 400-414. https://doi.org/10.1016/j.dynatmoce.2010.07.002 Yang, W., Zhao, X., Guo, L., Huang, B., Chen, M., Fang, Z., Zhang, X., & Qiu, Y. (2021). Utilization of soot and 210Po-210Pb disequilibria to constrain particulate organic carbon fluxes in the Northeastern South China Sea. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.694428 Zhou, K. B., Dai, M. H., Kao, S. J., Wang, L., Xiu, P., Chai, F., Tian, J. W., & Liu, Y. (2013). Apparent enhancement of 234Th-based particle export associated with anticyclonic eddies. Earth and Planetary Science Letters, 381, 198-209. https://doi.org/10.1016/j.epsl.2013.07.039 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-09-01 校外 Off-campus:開放下載的時間 available 2027-09-01 您的 IP(校外) 位址是 3.16.135.226 現在時間是 2024-11-22 論文校外開放下載的時間是 2027-09-01 Your IP address is 3.16.135.226 The current date is 2024-11-22 This thesis will be available to you on 2027-09-01. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-09-01 |
QR Code |