Responsive image
博碩士論文 etd-0802122-180238 詳細資訊
Title page for etd-0802122-180238
論文名稱
Title
鎳錳鈷鋰離子電池於不同電量利用區間對健康狀態之影響
Effect of Charge Utilization Range on State-of-Health for NMC Lithium-Ion Battery
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-07-09
繳交日期
Date of Submission
2022-09-02
關鍵字
Keywords
鎳錳鈷三元鋰離子電池(Li(NixMnyCoz), NMC)、電量利用區間、放電深度(Depth of Discharge, DOD)、電池健康狀態(State of Health, SOH)、有理函數迴歸
Nickel-manganese-cobalt ternary lithium-ion batteries (NMC), charge utilization range, depth of discharge (DOD), state of health (SOH), rational function regression
統計
Statistics
本論文已被瀏覽 124 次,被下載 2
The thesis/dissertation has been browsed 124 times, has been downloaded 2 times.
中文摘要
本論文旨在探討不同操作條件對鎳錳鈷三元鋰離子電池(Li(NixMnyCoz), NMC)健康狀態(State of Health, SOH)的影響。將實驗電池以不同條件,如不同電量狀態(State of Charge, SOC)操作區間與不同放電深度(Depth of Discharge, DOD),進行大量的充放電循環實驗,過程中記錄實驗電池的電池健康狀態衰減的情形。將所記錄的數據資料分類並正規化後,利用有理函數法,進行迴歸得到SOH與各項影響因素的估測方程式。最後,以各種老化資料組合執行數學模型估測有效性的驗證,期望可在電池正常使用期間即可進行SOH估測,得知預期電池壽命。
從靜置實驗可知,電池充電後靜置30分鐘於300全充放週期後,SOH仍有99 %;比起無靜置時間的電池之SOH高出80 %,此舉能延緩電池SOH的衰減。從蒐集的實驗數據資料可知,電池運轉於低電量0~30 %區間於600個等效全充放週期(Equivalent full charging/discharging cycles)其SOH仍有99 %;對比運轉於高電量70~100 %區間之SOH高出16 %。0~60 %區間於400個等效全充放週期其SOH仍有95 %;比起運轉於40~100 %區間之SOH高出10 %。透過前兩種不同DOD與區間比較得知,DOD較小或使用區間低的情況都能延緩電池SOH衰減,且使用區間對於電池的SOH影響較大。
數學建模方面,於多種組合資料之迴歸結果,選取電池運轉在高電量區間資料投入訓練之判定係數(Coefficient of determination, R2)最高可達0.85、均方根誤差(Root mean square error, RMSE)為2.08、平均絕對誤差(Mean absolute error, MAE)為1.46。
Abstract
This dissertation aims to investigate the capacity degradation of nickel-manganese-cobalt (Li(NixMnyCoz), NMC) ternary lithium-ion batteries under different operation conditions. A great number of cycles charging and discharging experiments are performed on the experimental batteries under different conditions, such as different state of charge (SOC) ranges and different depth of discharge (DOD). And the declines of SOH are recorded during the experiments periodically. The recorded data are sorted and normalized, and then the rational function regression is applied to obtain the SOH estimation equation upon different factors. Afterwards, various aging data are composed to carry out effective validations for the mathematic model. It is anticipated that the SOH expectancy can be estimated during normal operation stage of lithium-ion batteries.
From resting experiments, after 300 full charging/discharging cycles, the battery was rested for 30 minutes after charging test with SOH 99 % is 80 % higher than that without resting. The decline of SOH becomes milder by adding resting time after charging process. From the accumulated experimental data, the battery operating in the low charge utilization range 0 ~30 % after 600 equivalent full charging/discharging cycles with SOH 99 % is 16 % higher than that in the high charge utilization range 70 ~100 %. Similarly, the battery operating in 0 ~60 % after 400 equivalent full charging/discharging cycles with SOH 95 % is 10 % higher than that in the utilization range 40 ~100 %. Through previous two cases, the SOH decline with less DOD is slower than the higher DOD case, and the effect of operating range for SOH decline is more significant. Therefore, the result shows that if the battery is operated with less DOD in the lower charge utilization range, the battery SOH service life can be effectively prolonged.
For the mathematical modeling, from regression results of various combination data, the battery operating in the high battery range is selected for training. The coefficient of determination (R2) was 0.85, the root mean square error (RMSE)is 2.08, and the mean absolute error (MAE) is 1.46.
目次 Table of Contents
論文審定書i
致謝ii
中文摘要iii
Abstractiv
目錄v
圖表目錄vi
第一章緒論1
1-1 背景與動機1
1-2 論文大綱4
第二章鋰離子電池與數值方法介紹5
2-1 鋰離子電池介紹5
2-2 充/放電方法7
2-3 電池電量與健康狀態估測9
2-4 電池電量平衡15
2-5 曲線近似的數值方法19
第三章實驗過程22
3-1 電池老化平台設置22
3-2 靜置時間24
3-3 不同使用電量與運轉區間26
3-4 模型建立流程28
第四章鋰離子老化實驗數據迴歸分析與驗證30
4-1 實驗結果與分析30
4-2 模型建立模擬分析32
第五章結論與未來展望48
5-1 結論48
5-2 未來展望49
參考文獻50



參考文獻 References
[1] Y. Wang, J. Tian, Z. Sun, L. Wang, R. Xu, M. Li, and Z. Chen, “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems,” Renewable and Sustainable Energy Reviews, Vol. 131, 2020.
[2] S. Saxena, C. Hendricks, and M. Pecht, “Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges,” Journal of Power Sources, Vol. 327, pp. 394-400, 2016.
[3] Y. Gao, J. Jiang, C. Zhang, W. Zhang, and Y. Jiang, “Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode,” Journal of Power Sources, Vol. 400, pp. 641-651, 2018.
[4] A. Maheshwari, M. Heck, and M. Santarelli, “Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy,” Electrochimica Acta, Vol. 273, pp. 335-348, 2018.
[5] J. Wang, J. Purewal, P. Liu, J. Hicks-Garner, S. Soukazian, E. Sherman, A. Sorenson, L. Vu, H. Tataria, and M. W. Verbrugge, “Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation,” Journal of Power Sources, Vol. 269 pp. 937-948, 2014.
[6] U. Shreenag Meda, L. Lal, S. M, and P. Garg, “Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: A review on the recent advances,” Journal of Energy Storage, Vol. 47, pp. 394-400, 2022.
[7] K. Xu, “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries,” Chemical Reviews, Vol. 104, pp. 4303-4417, 2004.
[8] I. Buchmann, Batteries in A Portable World, Third Edition, Published by Cadex Electronics Inc., April 2011.
[9] B. Ghanbarzadeh, A. Khatibi, A. Asadi, and B. Shokri, “Regulating lithium-ion flux in the solid electrolyte interphase layer to prevent lithium dendrite growth on lithium metal anode,” Journal of Energy Storage, Vol. 47, 2022.
[10] Y. Zhang, S. Song, Y. Gao, T. Liu, and H. Zhao, “Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: a review on the recent advances,” Journal of Energy Chemistry, Vol. 72, pp. 166-175, 2022.
[11] L. Tan, Y. Sun, C. Wei, Y. Tao, Y. Tian, Y, An, Y. Zhang, S. Xiong, and J. Feng, “Design of robust, lithiophilic, and flexible inorganic-polymer protective layer by separator engineering enables dendrite-free lithium metal batteries with LiNi0.8 Mn 0.1 Co0.1 O2 cathode, ” Small, Vol. 17, No. 13, 2021.
[12] B. Wu, J. Lochala, T. Taverne, and J. Xiao, “The interplay between solid electrolyte interface (SEI) and dendritic lithium growth,” Nano Energy, Vol. 40, pp. 34-41, 2017.
[13] H. C. Chen, H. H. Chou, S.L. Wu, H. C. Chen ,and L. R. Chen, “ReflexTM waveform discussed by ac impedance impact on lithium-ion battery charging effects,” in Proceeding IEEE Conference on Industrial Electronics and Applications, pp. 146-150, June 2014.
[14] A. A. Refai, O. Rawashdeh, and R. Abousleiman, “An experimental survey of li-ion battery charging methods,” SAE International Journal of Alternative Powertrains, Vol. 5, No. 1, pp. 23-29, May 2016.
[15] 鄭戎傑,“鉛酸電池脈衝充電特性研究”,國立中山大學電機工程研究所碩士論文,2003年5月。
[16] 陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程研究所碩士論文,2007年6月。
[17] E. Aslan and Y. Yasa, “A review on the battery state of charge estimation methods for electric vehicle battery management systems,” in Proceeding 11th International Conference on Electrical and Electronics Engineering, pp. 281-285, 2019.
[18] R. Xiong, J. Cao, Q. Yu, H. He, and F. Sun, “Critical review on the battery state of charge estimation methods for electric vehicles,” in IEEE Access, Vol. 6, pp. 1832-1843, 2018.
[19] A. P. Schmidt, M. Bitzer, Á.W. Imre, and L. Guzzella, “Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell,” Journal of Power Sources, Vol. 195, No. 15, pp. 5071-5080, 2010.
[20] S. K. Rahimian, S. Rayman, and R. E. White, “State of charge and loss of active material estimation of a lithium ion cell under low earth orbit condition using kalman Filtering approaches,” Journal of The Electrochemical Society, Vol. 159, 2012.
[21] K. A. Smith, C. D. Rahn, and C. Y. Wang, “Model-based electrochemical estimation of lithium-ion batteries,” in Proceeding IEEE International Conference on Control Applications, Vol. 18, No. 1, pp. 714-719, 2008.
[22] K. A. Smith, C. D. Rahn, and C. Y. Wang, “Control oriented 1D electrochemical model of lithium ion battery,” Energy Conversion and Management, Vol. 48, No. 9, pp. 2565-2578, 2007.
[23] X. Han, M. Ouyang, L. Lu, and J. Li, “Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part II: Pseudo-two-dimensional model simplification and state of charge estimation,” Journal Power Sources, Vol. 278, pp. 814-825, Mar. 2015.
[24] J. Xu, C. C. Mi, B. Cao, and J. Cao, “A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model,” Journal. Power Sources, vol. 233, pp. 277-284, Jul. 2013.
[25] Z. S. Hou and J. X. Xu, “On data-driven control theory: the state of the art and perspective,” Acta Automatica Sinica, Vol. 35, No. 6, pp. 650-667, June 2009.
[26] F. Sun and R. Xiong, “A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles,” Journal Power Sources, Vol. 274, pp. 582-594, Jan. 2015.
[27] R. Xiong, F. Sun, H. He, and T. D. Nguyen, “A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles,” Energy, Vol. 63, pp. 295-308, Dec. 2013.
[28] V. Klass, M. Behm, and G. Lindbergh, “A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation,” Journal Power Sources, Vol. 270, pp. 262-272, Dec. 2014.
[29] J. Zhou, D. Liu, Y. Peng, and X. Peng, “Dynamic battery remaining useful life estimation: an on-line data-driven approach,” in Proceeding IEEE International Instrumentation and Measurement Technology Conference, pp. 2196-2199, May 2012.
[30] F. Sun, R. Xiong, and H. He, “A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique,” Applied Energy, Vol. 162, pp. 1399-1409, 2016.
[31] R. Xiong, L. Li, and J. Tian, “Towards a smarter battery management system: A critical review on battery state of health monitoring methods,” Journal of Power Sources, Vol. 405, pp. 18-29, 2018.
[32] 陳沛琳,“磷酸鐵鋰電池之電壓微分充放電策略”,國立中山大學電機工程研究所碩士論文,2017年8月。
[33] 呂俊辰,“磷酸鐵鋰電池之電壓微分健康狀態估測”,國立中山大學電機工程研究所碩士論文,2020年7月。
[34] 郭源楷,“運用電壓微分之鎳鈷錳鋰離子電池健康狀態估測”,國立中山大學電機工程研究所碩士論文,2021年9月。
[35] U. K. Das, P. Shrivastava, K. S. Tey, M. Y. I. B. Idris, S. Mekhilef, E. Jamei, M. Seyedmahmoudian, and A. Stojcevski,“Advancement of lithium-ion battery cells voltage equalization techniques: A review,” Renewable and Sustainable Energy Reviews, Vol. 134, 2020.
[36] Z. B. Omariba, L. Zhang, and D. Sun,“Review of battery cell balancing methodologies for optimizing battery pack performance in electric vehicles,” in IEEE Access, Vol. 7, pp. 129335-129352, 2019.
[37] 楊孟棻,“可切換極性之返馳式電池電量平衡電路”,國立中山大學電機工程研究所碩士論文,2017年9月。
[38] 莊博鈞,“具中繼諧振儲能槽之電量平衡電路”,國立中山大學電機工程研究所碩士論文,2019年9月。
[39] 羅朝元,“任意電池模組間電量轉移之電量平衡”,國立中山大學電機工程研究所碩士論文,2021年1月。
[40] 蔡天鉞,“數學與數學建模”,全華TOPLINE 數學專刊_臺灣師範大學數學系。
[41] NIST/SEMATECH e-Handbook of Statistical Methods, excerpted from http://www.itl.nist.gov/div898/handbook/, 2022/08/23.
[42] Specification of product for Lithium-ion rechargeable cell, mode: ICR18650-26JM, samsung, Sept. 2014.
[43] MCL2 Mini Series:可攜式電池測試設備 Data sheet,CTE承德科技,2022。
[44] M. Uno and A. Kukita, “String-to-battery voltage equalizer based on a half-bridge converter with multistacked current doublers for series-connected batteries,” IEEE Transaction on Power Electronics, Vol. 34, No. 2, pp. 1286-1298, Feb. 2019.
[45] J. Neubauer and A. Pesaran, “NREL’s PHEV/EV li-ion battery secondary-use project,” Advanced Automotive Batteries Conference, May 2010.
[46] 陳加忠,中興大學生醫研究之統計方法(決定係數R2之判斷標準),取於http://amebse.nchu.edu.tw/new_page_535.htm,2022/08/23。
[47] C. H. Chen and Ch. W. Pao, “Phase-field study of dendritic morphology in lithium metal batteries,” Journal of Power Sources, Vol. 484 , Feb. 2021.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code