論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
氧化銦/氧化鋅異構磊晶超晶格之濺鍍成長與物性 In₂O₃/ZnO Heterostructural Superlattices: Epitaxial Sputter-Growth and Physical Properties |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
65 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2019-07-29 |
繳交日期 Date of Submission |
2019-09-03 |
關鍵字 Keywords |
氧化鋅、氧化銦、射頻濺鍍、超晶格、變程躍遷、定程躍遷 Hopping, RT, Sputtering, Superlattice, ZnO, In2O3 |
||
統計 Statistics |
本論文已被瀏覽 5628 次,被下載 7 次 The thesis/dissertation has been browsed 5628 times, has been downloaded 7 times. |
中文摘要 |
本實驗利用射頻磁控濺鍍機(RF Magnetron Sputter)在923K下,於c面藍寶石基板上製程In2O3/ZnO之異構超晶格薄膜。 首先,藉由改變濺鍍時間,尋找較佳的單層膜製程參數,透過X射線繞射(XRD)、Phi掃描以及低掠角X射線繞射(GIXRD)探討不同參數下薄膜的結構是否為磊晶,並透過X射線反射率(XRR)與GenX軟體擬合得知薄膜厚度、粗糙度與密度,進一步堆疊數個週期以製程超晶格結構。 在15K~290K的溫度區間量測變溫過程的電阻變化(RT),以及再照射紅光(633nm)、綠光(514nm)與藍光(454nm)雷射,並發現在綠光以及藍光照射下,對電導率取自然對數以及溫度的負二分之一與負四分之一次方做圖,發現定程躍遷(fixed range hopping)與變程躍遷(variable range hopping)主導不同溫度區間的影響,顯示光子可能具有增強熱激發效率之現象。 |
Abstract |
The superlattices of In2O3/ZnO have been successfully fabricated by RF magnetron sputtering on c-oriented sapphire substrates at 923K. The film-substrate epitaxy is determined by X-ray diffraction (XRD) data based on the omega-2theta scans, Phi scans and Grazing Incidence X-ray Diffraction (GIXRD) of 2theta scans at a fixed small incident angle of omega. Meanwhile, the X-ray reflectivity (XRR) method was also employed to acquire the thickness, density and roughness of the heterojunction multilayered samples. The temperature-dependent electrical characteristics were studied from 15 K to 290 K by measurement of the resistivity as a function of temperature to obtain an RT curve either in the dark or under illumination of individual lasers at a different wavelength of 633 nm (red), 514 nm (green), or 454 nm (blue) on the samples. The conduction mechanism of the heterojunction superlattices are understood as photo-assisted thermal activation in the context of band conduction or hopping conduction as judged by their exponential functional dependence on T^(-1), T^(-1/2), or T^(-1/4). In band conductions, electrons are set free from bonding by thermally excitation from a donor state into the conduction band. In hopping conductions, the electrons, never set free, hop from one impurity atom to another. The distinct photo-thermal effects are investigated. |
目次 Table of Contents |
論文審定書 i Acknowledgment ii 摘要 iii Abstract iv Content v Figures vi Tables ix I Introduction 1 II Experimental 3 A. Single-layer films 4 B. Bilayer films 5 C. Multilayer films 6 III Results and Discussion 8 III-I Structural Properties 8 A. Single-layer comparison 8 B. Bilayer comparison 21 C. Multiple layer comparison 26 III-II Photoelectronic Characterization 31 IV Conclusion 45 References 47 Appendices 51 |
參考文獻 References |
[1] K.H.L.Zhang, V.K.Lazarov, P.L.Galindo, F.E.Oropeza, D.J.Payne, and R.G.Egdell, “Domain Matching Epitaxial Growth of In2O3 Thin Films on α-Al2O3 (0001)”, Cryst. Growth Des.vol. 3, no. 0001, 2012. [2] D.R.Hagleitner et al., “Bulk and surface characterization of In2O3(001) single crystals”, Phys. Rev. B-Condens. Matter Mater. Phys., vol. 85, no. 11, pp. 0–11, 2012. [3] D. Beena, K. J. Lethy, R. Vinodkumar “Photoluminescence in laser ablated nanostructured indium oxide thin films”, Optoelectron. Adv. Mater. Rapid Commun., vol. 5, no. 1, pp. 1–11, 2010. [4] K. H. L.Zhang et al., “Surface structure and electronic properties of In2O3(111) single-crystal thin films grown on Y-stabilized ZrO2(111)”, Chem. Mater., vol. 21, no. 19, pp. 4353–4355, 2009. [5] Mamoru Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films”, Glass, vol. 70, pp. 91–100, 1980. [6] A.Janotti and C.G.Van DeWalle, “Fundamentals of zinc oxide as a semiconductor”, Reports Prog. Phys., vol. 72, no. 12, 2009. [7] Klaus Ellmer, Andreas Klein, Bernd Rech “Transparent Conductive Zinc Oxide”, vol. 3. 2008. [8] Ü.Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 1–103, 2005. [9] H.Faber et al., “Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution”, Sci. Adv., vol. 3, no. 3, pp. 1–10, 2017. [10] M.Björck andG.Andersson, “GenX: An extensible X-ray reflectivity refinement program utilizing differential evolution,” J. Appl. Crystallogr., vol. 40, no. 6, pp. 1174–1178, 2007. [11] M.Ying et al., “Effect of sapphire substrate nitridation on the elimination of rotation domains in ZnO epitaxial films”, J. Phys. D. Appl. Phys., vol. 37, no. 21, pp. 3058–3062, 2004. [12] O.Lozano et al., “Factors limiting the doping efficiency of transparent conductors: A case study of Nb-doped In2O3 epitaxial thin-films”, Sol. Energy Mater. Sol. Cells, vol. 113, pp. 171–178, 2013. [13] A.Wang et al., “Charge transport, optical transparency, microstructure, and processing relationships in transparent conductive indium-zinc oxide films grown by low-pressure metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 73, no. 3, pp. 327–329, 1998. [14] I. A.Tambasov et al., “Temperature-dependent Photoconductance and Optical Properties of In2O3 Thin Films Prepared by Autowave Oxidation,” J. Sib. Fed. Univ. Math. Phys., vol. 10, no. 4, pp. 399–409, 2018. [15] V.Brinzari, M.Ivanov, B. K.Cho, M.Kamei, andG.Korotcenkov, “Photoconductivity in In2O3 nanoscale thin films: Interrelation with chemisorbed-type conductometric response towards oxygen,” Sensors Actuators, B Chem., vol. 148, no. 2, pp. 427–438, 2010. [16] D. B.Buchholz, L.Zeng, M. J.Bedzyk, andR. P. H.Chang, “Differences between amorphous indium oxide thin films,” Prog. Nat. Sci. Mater. Int., vol. 23, no. 5, pp. 475–480, 2013. [17] A. J.Leenheer, J. D.Perkins, M. F. A. M.VanHest, J. J.Berry, R. P.O’Hayre, andD. S.Ginley, “General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 11, pp. 1–5, 2008. [18] O.Bierwagen andJ. S.Speck, “High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration,” Appl. Phys. Lett., vol. 97, no. 7, pp. 3–6, 2010. [19] O.Bierwagen, “Indium oxide - A transparent, wide-band gap semiconductor for (opto)electronic applications,” Semicond. Sci. Technol., vol. 30, no. 2, p. 24001, 2015. [20] Y. C.Liang, “Material characteristics of sputter-deposited Zr-doped In2O3/ZnO heterostructures on sapphire (0001) substrates,” Thin Solid Films, vol. 517, no. 14, pp. 3874–3878, 2009. [21] Y.Furubayashi, M.Maehara, andT.Yamamoto, “New Insights on Factors Limiting the Carrier Transport in Very Thin Amorphous Sn-Doped In2O3 Films with High Hall Mobility,” Nanoscale Res. Lett., vol. 14, 2019. [22] G.Korotcenkov, V.Brinzari, andM.-H.Ham, “In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion,” Crystals, vol. 8, no. 1, p. 14, 2018. [23] Otfried Madelung “Introduction to Solid-State Theory”, Springer Science & Business Media, 1978. [24] R.H.Bube, “Electrons in solids third edition - An Introductory Survey”, Academic Press, San Diego,1992. [25] B. M.Taele, H.Narayan, andR.Mukaro, “Hopping photoconductivity and the effectiveness of phonon detection in GaAs:Zn bolometers,” Solid. State. Electron., vol. 52, no. 5, pp. 782–786, 2008. [26] 鄧鈞元, 氧化鋅/氧化銦超晶格磊晶薄膜:磁控濺鍍法成長與其物理特性之量測, 中山大學物理學系碩士論文, 2017, pp.15-19. [27] 鄭顏慶, 以氧化鋅/氧化鋁超晶格為表面層在三族氮化物發光二極體上之應用,中山大學物理學系碩士論文, 2019, pp.20-31. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |