Responsive image
博碩士論文 etd-0803119-224530 詳細資訊
Title page for etd-0803119-224530
論文名稱
Title
氧化銦/氧化鋅異構磊晶超晶格之濺鍍成長與物性
In₂O₃/ZnO Heterostructural Superlattices: Epitaxial Sputter-Growth and Physical Properties
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-29
繳交日期
Date of Submission
2019-09-03
關鍵字
Keywords
氧化鋅、氧化銦、射頻濺鍍、超晶格、變程躍遷、定程躍遷
Hopping, RT, Sputtering, Superlattice, ZnO, In2O3
統計
Statistics
本論文已被瀏覽 5628 次,被下載 7
The thesis/dissertation has been browsed 5628 times, has been downloaded 7 times.
中文摘要
本實驗利用射頻磁控濺鍍機(RF Magnetron Sputter)在923K下,於c面藍寶石基板上製程In2O3/ZnO之異構超晶格薄膜。
首先,藉由改變濺鍍時間,尋找較佳的單層膜製程參數,透過X射線繞射(XRD)、Phi掃描以及低掠角X射線繞射(GIXRD)探討不同參數下薄膜的結構是否為磊晶,並透過X射線反射率(XRR)與GenX軟體擬合得知薄膜厚度、粗糙度與密度,進一步堆疊數個週期以製程超晶格結構。
在15K~290K的溫度區間量測變溫過程的電阻變化(RT),以及再照射紅光(633nm)、綠光(514nm)與藍光(454nm)雷射,並發現在綠光以及藍光照射下,對電導率取自然對數以及溫度的負二分之一與負四分之一次方做圖,發現定程躍遷(fixed range hopping)與變程躍遷(variable range hopping)主導不同溫度區間的影響,顯示光子可能具有增強熱激發效率之現象。
Abstract
The superlattices of In2O3/ZnO have been successfully fabricated by RF magnetron sputtering on c-oriented sapphire substrates at 923K. The film-substrate epitaxy is determined by X-ray diffraction (XRD) data based on the omega-2theta scans, Phi scans and Grazing Incidence X-ray Diffraction (GIXRD) of 2theta scans at a fixed small incident angle of omega. Meanwhile, the X-ray reflectivity (XRR) method was also employed to acquire the thickness, density and roughness of the heterojunction multilayered samples. The temperature-dependent electrical characteristics were studied from 15 K to 290 K by measurement of the resistivity as a function of temperature to obtain an RT curve either in the dark or under illumination of individual lasers at a different wavelength of 633 nm (red), 514 nm (green), or 454 nm (blue) on the samples. The conduction mechanism of the heterojunction superlattices are understood as photo-assisted thermal activation in the context of band conduction or hopping conduction as judged by their exponential functional dependence on T^(-1), T^(-1/2), or T^(-1/4). In band conductions, electrons are set free from bonding by thermally excitation from a donor state into the conduction band. In hopping conductions, the electrons, never set free, hop from one impurity atom to another. The distinct photo-thermal effects are investigated.
目次 Table of Contents
論文審定書 i
Acknowledgment ii
摘要 iii
Abstract iv
Content v
Figures vi
Tables ix
I Introduction 1
II Experimental 3
A. Single-layer films 4
B. Bilayer films 5
C. Multilayer films 6
III Results and Discussion 8
III-I Structural Properties 8
A. Single-layer comparison 8
B. Bilayer comparison 21
C. Multiple layer comparison 26
III-II Photoelectronic Characterization 31
IV Conclusion 45
References 47
Appendices 51
參考文獻 References
[1] K.H.L.Zhang, V.K.Lazarov, P.L.Galindo, F.E.Oropeza, D.J.Payne, and R.G.Egdell, “Domain Matching Epitaxial Growth of In2O3 Thin Films on α-Al2O3 (0001)”, Cryst. Growth Des.vol. 3, no. 0001, 2012.
[2] D.R.Hagleitner et al., “Bulk and surface characterization of In2O3(001) single crystals”, Phys. Rev. B-Condens. Matter Mater. Phys., vol. 85, no. 11, pp. 0–11, 2012.
[3] D. Beena, K. J. Lethy, R. Vinodkumar “Photoluminescence in laser ablated nanostructured indium oxide thin films”, Optoelectron. Adv. Mater. Rapid Commun., vol. 5, no. 1, pp. 1–11, 2010.
[4] K. H. L.Zhang et al., “Surface structure and electronic properties of In2O3(111) single-crystal thin films grown on Y-stabilized ZrO2(111)”, Chem. Mater., vol. 21, no. 19, pp. 4353–4355, 2009.
[5] Mamoru Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films”, Glass, vol. 70, pp. 91–100, 1980.
[6] A.Janotti and C.G.Van DeWalle, “Fundamentals of zinc oxide as a semiconductor”, Reports Prog. Phys., vol. 72, no. 12, 2009.
[7] Klaus Ellmer, Andreas Klein, Bernd Rech “Transparent Conductive Zinc Oxide”, vol. 3. 2008.
[8] Ü.Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 1–103, 2005.
[9] H.Faber et al., “Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution”, Sci. Adv., vol. 3, no. 3, pp. 1–10, 2017.
[10] M.Björck andG.Andersson, “GenX: An extensible X-ray reflectivity refinement program utilizing differential evolution,” J. Appl. Crystallogr., vol. 40, no. 6, pp. 1174–1178, 2007.
[11] M.Ying et al., “Effect of sapphire substrate nitridation on the elimination of rotation domains in ZnO epitaxial films”, J. Phys. D. Appl. Phys., vol. 37, no. 21, pp. 3058–3062, 2004.
[12] O.Lozano et al., “Factors limiting the doping efficiency of transparent conductors: A case study of Nb-doped In2O3 epitaxial thin-films”, Sol. Energy Mater. Sol. Cells, vol. 113, pp. 171–178, 2013.
[13] A.Wang et al., “Charge transport, optical transparency, microstructure, and processing relationships in transparent conductive indium-zinc oxide films grown by low-pressure metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 73, no. 3, pp. 327–329, 1998.
[14] I. A.Tambasov et al., “Temperature-dependent Photoconductance and Optical Properties of In2O3 Thin Films Prepared by Autowave Oxidation,” J. Sib. Fed. Univ. Math. Phys., vol. 10, no. 4, pp. 399–409, 2018.
[15] V.Brinzari, M.Ivanov, B. K.Cho, M.Kamei, andG.Korotcenkov, “Photoconductivity in In2O3 nanoscale thin films: Interrelation with chemisorbed-type conductometric response towards oxygen,” Sensors Actuators, B Chem., vol. 148, no. 2, pp. 427–438, 2010.
[16] D. B.Buchholz, L.Zeng, M. J.Bedzyk, andR. P. H.Chang, “Differences between amorphous indium oxide thin films,” Prog. Nat. Sci. Mater. Int., vol. 23, no. 5, pp. 475–480, 2013.
[17] A. J.Leenheer, J. D.Perkins, M. F. A. M.VanHest, J. J.Berry, R. P.O’Hayre, andD. S.Ginley, “General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 11, pp. 1–5, 2008.
[18] O.Bierwagen andJ. S.Speck, “High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration,” Appl. Phys. Lett., vol. 97, no. 7, pp. 3–6, 2010.
[19] O.Bierwagen, “Indium oxide - A transparent, wide-band gap semiconductor for (opto)electronic applications,” Semicond. Sci. Technol., vol. 30, no. 2, p. 24001, 2015.
[20] Y. C.Liang, “Material characteristics of sputter-deposited Zr-doped In2O3/ZnO heterostructures on sapphire (0001) substrates,” Thin Solid Films, vol. 517, no. 14, pp. 3874–3878, 2009.
[21] Y.Furubayashi, M.Maehara, andT.Yamamoto, “New Insights on Factors Limiting the Carrier Transport in Very Thin Amorphous Sn-Doped In2O3 Films with High Hall Mobility,” Nanoscale Res. Lett., vol. 14, 2019.
[22] G.Korotcenkov, V.Brinzari, andM.-H.Ham, “In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion,” Crystals, vol. 8, no. 1, p. 14, 2018.
[23] Otfried Madelung “Introduction to Solid-State Theory”, Springer Science & Business Media, 1978.
[24] R.H.Bube, “Electrons in solids third edition - An Introductory Survey”, Academic Press, San Diego,1992.
[25] B. M.Taele, H.Narayan, andR.Mukaro, “Hopping photoconductivity and the effectiveness of phonon detection in GaAs:Zn bolometers,” Solid. State. Electron., vol. 52, no. 5, pp. 782–786, 2008.
[26] 鄧鈞元, 氧化鋅/氧化銦超晶格磊晶薄膜:磁控濺鍍法成長與其物理特性之量測, 中山大學物理學系碩士論文, 2017, pp.15-19.
[27] 鄭顏慶, 以氧化鋅/氧化鋁超晶格為表面層在三族氮化物發光二極體上之應用,中山大學物理學系碩士論文, 2019, pp.20-31.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code