論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available
論文名稱 Title |
鈦鋯酸鉛壓電陶瓷的強電-強彈性雙晶 The ferroelectric-ferroelastic twinning in lead zirconate titanate ceramics |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
117 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2010-07-27 |
繳交日期 Date of Submission |
2010-08-06 |
關鍵字 Keywords |
鈦鋯酸鉛、晶域、微結構 lead zirconate titanate, domain, microstructure |
||
統計 Statistics |
本論文已被瀏覽 5675 次,被下載 15 次 The thesis/dissertation has been browsed 5675 times, has been downloaded 15 times. |
中文摘要 |
本實驗主要研究鈦鋯酸鉛 (Pb(Zr0.52Ti0.48)O3) 於相圖中MPB 之組成,經由解析不同形貌之晶域判定所屬晶相。實驗中藉由X-ray 繞射分析儀鑑定燒結前後晶相之結果為正方晶相 (tetragonal)。並利用掃描式電子顯微鏡 (SEM) 觀察晶域之表面形態。而藉由穿透式電子顯微鏡 (TEM) 觀察晶域條紋之亮暗對比發現 α-晶界、δ-晶界及 π-晶界的產生。並利用擇區繞射圖譜 (SADP) 觀察90o 晶域壁為 {011)、180o 晶域壁為 {100) 及 {220)。最後經由對比分析90o 晶域之位移向量 R = ε[011]、180o 晶域之位移向量 R = n[001]。不同形貌晶域之晶相則是利用收斂束電子繞射 (CBED) 解析,結果顯示藉由檢視 Z = [100], [110], [111] 之對稱性,90o 晶域 (δ-晶界) 及 π-晶界皆為正方晶相。 |
Abstract |
The composition dependent variation of ferroelectric domain structure in lead zirconate titanate (Pb(Zr0.52Ti0.48)O3) ceramics have been investigated within the morphotropic phase boundary (MPB). Tetragonal phase in sintered samples were identified via X-ray diffractometry (XRD). Representative microstructures of ferroelectric domains were examined using scanning electron microscopy (SEM). α-boundaries, δ- boundaries, and π-boundaries were analyzed from the contrast of extreme fringe patterns by transmission electron microscopy (TEM). Twin planes for 90o domains lie in {011) and for 180o domains lie in {100) and {220) were determined by selected area diffraction patterns (SADP). Traditional contrast analysis was adopted for determining displacement vectors (R). 90o domains with R = ε[011] and 180o domains with R = n[001]. Convergent beam electron diffraction (CBED) was performed to identify crystalline phases of different domain configurations. By examined the symmetry along the Z = [100], [110], and [111] zone axis, both δ-boundaries and π-boundaries are tetragonal phase. |
目次 Table of Contents |
Abstract I 摘要 II 目錄 III 表目錄 VII 圖目錄 VIII 第一章 前言 1 第二章 理論及文獻回顧 3 2.1 壓電性 (piezoelectricity) 3 2.2 強電性 (ferroelectricity) 5 2.3 鈦鋯酸鉛之晶體結構 8 2.3.1 鈣鈦礦 (perovskite) 結構 8 2.3.2 鈦鋯酸鉛之B陽離子位置 9 2.3.3 不同晶相之結構 11 2.4 鈦鋯酸鉛之相圖 13 2.4.1 相圖介紹 13 2.4.2 相變化對於極化之影響 18 2.5 鈦鋯酸鉛之雙晶 (twinning) 19 2.5.1 雙晶的種類 19 2.5.2 強電性-強彈性雙晶 (ferroelectric-ferroelastic twinning) 20 2.5.3 正方相晶域 (tetragonal domains) 21 2.5.4 菱方相晶域 (rhombohedral domains) 25 2.5.5 MPB 之晶域 25 2.6 晶域壁之條紋對比 27 2.6.1 α-晶界 (α-boundaries) 27 2.6.2 δ-晶界 (δ-boundaries) 28 2.6.3 π-晶界 (π-boundaries) 30 第三章 實驗流程 33 3.1 PZT 試片製備 33 3.1.1 原始粉末 33 3.1.2 試片製程 33 3.2 密度量測 39 3.3 結晶相鑑定 40 3.3.1 X-ray 繞射分析儀 40 3.3.2 晶格常數的量測 40 3.3.3 混合相的解析 41 3.4 顯微組織分析 41 3.4.1 掃描式電子顯微鏡 41 3.4.2 背向散射電子繞射分析 43 3.4.3 穿透式電子顯微鏡 43 第四章 實驗結果 45 4.1 結晶相鑑定 45 4.2 顯微組織分析 53 4.3 晶域之晶向關係 59 4.4 晶域微結構的觀察 61 4.4.1 PZT 燒結二十四小時之晶域微結構 61 4.4.2 90o 晶域 63 4.4.3 180o 晶域 66 4.4.4 π-晶界 71 4.4.5 PZT 燒結二小時之晶域微結構 78 第五章 討論 82 5.1 結晶相鑑定 82 5.2 強電性晶域 85 5.3 π-晶界 86 5.4 奈米晶域 89 第六章 結論 91 第七章 未來工作 92 第八章 參考文獻 93 附錄 100 |
參考文獻 References |
[1] B. Jaffee, W. R. Cook, and H. Jaffee, Piezoelectric Ceramics, pp. 135-147, Academic Press, New York, NY, USA, 1971 [2] G. Shirane, K. Suzuki, and A. Takeda, “Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study,” J. Phys. Soc. Jpn., 7 [1] 12-18 (1952) [3] G. H. Haertling, “Ferroelectric ceramics: history and technology,” J. Am. Ceram. Soc., 82 [4] 797–818 (1999) [4] P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review,” J. Micromech. Microeng., 10 [2] 136–146 (2000) [5] D. Damjanovic, P. Muralt, and N. Setter, “Ferroelectric sensors,” IEEE Sens. J., 1 [3] 191-206 (2001) [6] B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S. E. Park, “A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution,” Appl. Phys. Lett. 74 [14] 2059–2061 (1999) [7] K. A. Schönau, L. A. Schmitt, M. Knapp, H. Fuess, R. A. Eichel, H. Kungl, and M. J. Hoffmann, “Nanodomain structure of Pb(Zr1−xTix)O3 at its morphotropic phase boundary: Investigations from local to average structure.” Phys. Rev. B, 75 [18] 4117–4200 (2007) [8] C. Klein, C. S. Hurlbut, Manual of Mineralogy, pp. 32, 21st Edition, J. Wiley, New York, NY, USA, 1993 [9] R. C. Buchanan, Ceramic Materials for Electronics Processing, Properties, and Applications, pp. 141-153, Marcel Dekker, New York, NY, USA, 1986 [10] G. Arlt and J. H. Calderwood, “Coercive and switching fields in ferroelectric ceramics,” Appl. Phys. Lett., 81 [14] 2605-2607 (2002) [11] F. D. Bloss, Crystallography and Crystal Chemistry, pp. 324-341, Holt, Rinehart and Winston, New York, NY, USA, 1971 [12] F. S. Galasso, Structure and Properties of Inorganic Solids, pp. 162-210, Pergamon, Oxford, England, 1970 [13] P. M. Woodward, “Octahedral tilting in perovskites: I, Geometrical considerations,” Acta Cryst., B53 [1] 32-43 (1997) [14] E. Sawaguchi, “Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3,” J. Phys. Soc. Jpn., 8 [5] 615–629 (1953) [15] C. Michel, “Atomic structures of two rhombohedral ferroelectric phases in the Pb(Zr,Ti)O3 solid solution series,” Solid State Commun., 7 [12] 865–868 (1969) [16] P. G. Lucuta, “Ferroelectric-domain structure in piezoelectric ceramics,” J. Am. Ceram. Soc., 72 [6] 933-937 (1989) [17] B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones, and L. E. Cross, “Stability of the monoclinic phase in the ferroelectric perovskite Pb(Zr1−xTix)O3,” Phys. Rev. B, 63 [1] 41031-9 (2000) [18] A. G. S. Filho, K. C. V. Lima, A. P. Ayala, I. Guedes, P. T. C. Freire, F. E. A. Melo, J. M. Filho, E. B. Arau′jo, and J. A. Eiras, ‘‘Raman scattering study of the Pb(Zr1−xTix)O3 system: Rhombohedral-monoclinic-tetragonal phase transitions,’’ Phys. Rev. B, 66 [13] 21071-4 (2002) [19] M. Deluca, T. Sakashita, C. Galassi, and G. Pezzotti, “Investigation of local orientation and stress analysis of PZT-based materials using micro-probe polarized Raman spectroscopy,” J. Eur. Ceram. Soc., 26 [12] 2337–2344 (2006) [20] J. Rouquette, J. Haines, V. Bornand, M. Pintarda, Ph. Papet, B. Bonnet, and F. A. Gorelli, “P–T phase diagram of PbZr0.52Ti0.48O3 (PZT),” Solid State Sci., 5 [3] 451–457 (2003) [21] D. M. Hatch and H. T. Stokes, “Antiferrodistortive phase transition in Pb(Ti0.48Zr0.52)O3: Space group of the lowest temperature monoclinic phase,” Phys. Rev. B, 65 [21] 2121011–3 (2002) [22] D. I. Woodward, J. Knudsen, and I. M. Reaney, “ Review of crystal and domain structures in the Pb(Zr1−xTix)O3 solid solution,” Phys. Rev. B, 72 [10] 41101-8 (2005) [23] S. Fushimi, and T. Ikeda, “Phase equilibrium in the system PbO-TiO2-ZrO2,” J. Am. Ceram. Soc., 50 [3] 129–132 (1967) [24] E. K. H. Salje, “Characteristics of perovskite-related materials,” Proc. Trans. R. Soc. London, A328 [1599] 409-416 (1989) [25] C. M. Foster, Z. Li, M. Grimsditch, S. K. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1 (TO) phonon in PbTiO3,” Phys. Rev. B, 48 [14] 10160–10167 (1993) [26] C. L. Jia, V. Nagarajan, J. Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, and R. Waser, “Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films,” Nature, 6 [1] 64-69 (2007) [27] C. L. Jia, S. B. Mi, K. Urban, I. Vrejoiu, M. Alexe, and D. Hesse, “Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films,” Nature, 7 [1] 57-61 (2008) [28] R. Theissmann, L. A. Schmitt, J. Kling, R. Schierholz, K. A. Schönau, H. Fuess, M. Knapp, H. Kungl, and M. J. Hoffmann, “Nanodomains in morphotropic lead zirconate titanate ceramics: On the origin of the strong piezoelectric effect,” J. Appl. Phys., 102 [2] 41111-6 (2007) [29] B. Noheda, “Structure and high-piezoelectricity in lead oxide solid solutions,” Curr. Opin. Solid State Mater. Sci., 6 [1] 27-34 (2002) [30] Nord, Jr., G.L., “Transformation-induced twin boundaries in minerals,” Phase Transitions, 48 [1-3] 107-134 (1994) [31] R. Gevers, H. Blank, and S. Amelinckx, “Extension of the Howei-Whelan equations for electron diffraction to non-centrosymmetric crystals,” Phys. stat. sol. (b), 13 [2] 449-465 (1966) [32] R. Serneels, M. Snykers, P. Delavingnette, R. Gevers, and S. Amelinckx, “Friedel’s law in electron diffraction as applied to the study of domain structure in non-centrosymmetrical crystals,” Phys. stat. sol. (b), 58 [1] 277-92 (1973) [33] S. C. Abrahams, “Ferroelasticity,” Mat. Res. Bull., 6 [10] 881-890 (1971) [34] E. K. W. Goo, R. K. Mishra, and G. Thomas, “Electron microscopy study of the ferroelectric domains and domain wall structure in PbZr0.52Ti0.48O3,” J. Appl. Phys., 52 [4] 2940-2943 (1981) [35] Y. H. Hu, H. M. Chan, X. W. Zhang, and M. P. Harmer, “Scanning electron microscopy and transmission electron microscopy study of ferroelectric domains in doped BaTiO3,” J. Am. Ceram. Soc., 69 [8] 594-602 (1986) [36] S. Y. Cheng, “Phase-transformation-induced microstructures in perovskites,” Ph. D. Thesis. Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2007 [37] W. N. Lawless, “180o domain-wall energies in BaTiO3,” Phys. Rev., 175 [2] 619-624 (1968) [38] C. A. Randall, D. J. Barber, and R. W. Whatmore, “Ferroelectric domain configurations in a modified-PZT ceramic,” J. Mater. Sci., 22 [3] 925-931 (1987) [39] J. Ricote, R. W. Whatmore, and D. J. Barber, “Studies of the ferroelectric domain configuration and polarization of rhombohedral PZT ceramics,” J. Phys.: Condens. Matter., 12 [3] 323–337 (2000) [40] M. J. Hoffmann, M. Hammer, A. Endriss, and D. C. Lupascu, “Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics,” Acta mater., 49 [7] 1301–1310 (2001) [41] L. A. Schmitt, K. A. Schönau, R. Theissmann, H. Fuess, H. Kungl, and M. J. Hoffmann, “Composition dependence of the domain configuration and size in Pb(Zr1−xTix)O3 ceramics,” J. Appl. Phys., 101 [7] 41071-7 (2007) [42] P. G. Lucuta and V. Teodorescu, “SEM, SAED, and TEM Investigations of Domain Structure in PZT Ceramics at Morphotropic Phase Boundary,” Appl. Phys. A, 37 [4] 237-242 (1985) [43] L. A. Schmitt, K. A.Schönau, R. Theissmann, H. Fuess, H. Kungl, M. J. Hoffmann, “Composition dependence of the domain configuration and size in Pb(Zr1-xTix)O3 ceramics,” J. Appl. Phys., 101 [7] 41071-41077 (2007) [44] S. Y. Cheng, N. J. Ho, and H. Y. Lu, “Polar directions of the 90o and 180o ferroelectric domains in tetragonal barium titanate determined by electron-backscatter diffraction,” J. Am. Ceram. Soc., 91 [4] 1244–1248 (2008) [45] S. Y. Cheng, N. J. Ho, and H. Y. Lu, “Micro-indentation induced domain switching in tetragonal barium titanate,” J. Am. Ceram. Soc., 91 [11] 3721–3727 (2008) [46] J. W. Edington, Practical Electron Microscopy in Materials Science, pp. 109-204, N. V. Philips, Gloeilampenfabrieken, Eindhoven, The Netherlands, 1976 [47] S. Amelinckx, and J. V. Landuyt, “Contrast effects at planar interfaces,” pp. 68-112 in Electron Microscopy in Mineralogy. Edited by H. R. Wenk, P. E. Champness, J. M. Christie, J. M. Cowley, A. H. Heuer, G. Thomas, and N. J. Tighe, Springer-Verlag, Berlin, Germany, 1976 [48] B. Tuttle, T. Headley, C. Drewien, J. Michael, J. Voigt, and T. Garino, “Comparison of ferroelectric domain assemblages in Pb(Zr,Ti)O3 thin films and bulk ceramics,” Ferroelectrics, 221 [1] 209-218 (1999) [49] G. L. Nord Jr., “Imaging transformation-induced microstructure”; pp. 455–508 in Mineral and Reactions at the Atomic Scale: Transmission Electron Microscopy, Rev. Mineral., Vol. 27, Edited by P. R. Buseck, Mineral. Soc. Am., Washington DC, USA, 1992 [50] S. Y. Cheng, N. J. Ho, and H. Y. Lu, “Phase-transformation-induced anti-phase boundary domains in barium cerate perovskite,” J. Am. Ceram. Soc., 89 [11] 3498–3506 (2006) [51] J. Chen, H. M. Chan, and M. P. Harmer, “Ordering structure and dielectric properties of undoped and Na/La-doped Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc., 72 [4] 593–598 (1989) [52] A. I. Kingon, and J. B. Clark, “Sintering of PZT ceramics: I, Atmosphere control,” J. Am. Ceram. Soc., 66 [4] 253-256 (1983) [53] J. J. Choi, J. H. Jang, B. D. Hahn, D. S. Park, W. H. Yoon, J. H. Ryu, and C. Parky, “Preparation of highly dense PZN–PZT thick films by the aerosol deposition method using excess-PbO powder,” J. Am. Ceram. Soc., 90 [11] 3389–3394 (2007) [54] A. J. Moulson, and J. M. Herber, Electroceramics: Material, Properties, Applications, pp. 361-362, Second Edition, J. Wiley, Sussex, England, 2003 [55] ASTM C373, “Standard test method for water absorption, bulk density, apparent porosity and apparent specific gravity for fired whiteware products,” Annual Book of ASTM Standards, 15.02, 112-13 (1990) [56] G. S. Kell, “Density, thermal expansivity, and compressibility of liquid water from 0 to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data, 20 [1] 97-105 (1975) [57] B. D. Cullity, and S .R. Stoke, Elements of X-ray Diffraction, Third Edition, pp. 66-70, Prentice-Hall, Englewood Cliff, NJ, USA, 1978 [58] C. W. Tai, K. Z. Baba-kishi, and K. H. Wong, “Microtexture characterization of PZT ceramics and thin films by electron microscopy,” Micron., 33 [6] 581-586 (2002) [59] G. A. Schneider, “Influence of electric field and mechanical stresses on the fracture of ferroelectrics,” Annu. Rev. Mater. Res., 37 491–538 (2007) [60] D. B. Williams, and C. B. Carter, Transmission Electron Microscopy – A Textbook for Materials Science, pp. 323-345, 389-405, Plenum, New York, NY, USA, 1996 [61] G. Remaut, R. Gevers, and S. Amelinckx, “Wavy fringes at domain boundaries in barium titanate observed in the electron microscope,” Phys. stat. sol. B, 20 [2] 613-621 (1967) [62] B. F. Buxton, J. A. Eades, J. W. Steeds, and G. M. Rackham, “The symmetry of electron diffraction zone axis patterns,” Philos. Trans. R. Soc. London, A281 [1301] 171-194 (1976) [63] P. E. Champness, Electron Diffraction in the Transmission Electron Microscope, pp. 91-111, BIOS, Oxford, UK, 2001 [64] A. D. Westwood and M. R. Notis, “Inversion domain boundaries in aluminum nitride,” J. Am. Ceram. Soc., 74 [61] 1226-1239 (1991) [65] M. Davis, “Picturing the elephant: Giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals,” J, Electroceram., 19 [1] 23-45 (2007) [66] B. Noheda, and D. E. Cox, “Bridging phases at the morphotropic boundaries of lead oxide solid solutions,” Phase Transitions, 79 [1–2] 5-20 (2006) |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 18.118.95.74 論文開放下載的時間是 校外不公開 Your IP address is 18.118.95.74 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |