論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-09-07
校外 Off-campus:開放下載的時間 available 2025-09-07
論文名稱 Title |
分散式TDM MIMO連續波雷達應用於室內定位及生理徵象感測 Distributed TDM MIMO CW Radar for indoor localization and vital sign detection |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
72 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-09-02 |
繳交日期 Date of Submission |
2022-09-07 |
關鍵字 Keywords |
到達角估計、數位波束成型、多輸入多輸出天線、低中頻接收機、室內定位、生理監測 DOA estimation, digital beamforming, MIMO, LOW-IF, indoor localization, vital sign detection |
||
統計 Statistics |
本論文已被瀏覽 243 次,被下載 0 次 The thesis/dissertation has been browsed 243 times, has been downloaded 0 times. |
中文摘要 |
本論文提出一個於分散式多輸入多輸出 (Multi-input multi-output, MIMO)天線架構的雷達系統,並以低中頻接收機進行降頻處理,其利用分時多工方式處理MIMO的陣列天線以達成單輸入多輸出之線性陣列特性,用以進行到達角估計,同時,將天線區分成兩個天線組的分散式天線架構,使系統可以得到目標物對於不同位置的天線組之角度,並以此進行室內二維定位,其優勢為即使不佔用頻寬亦能得出目標距離資訊。本論文還提出都卜勒權重法進行到達角估計,此法可用於抵抗雜波干擾及進行多人感測,同時利用超解析度演算法增進都卜勒權重法用於尋找目標都卜勒頻率及到達角估計的效能,而後利用數位波束成型技術還原出不同位置上的目標都卜勒訊號。最終實驗證明所使用的演算法可以進行室內多人定位及生理徵象感測,位置誤差皆在10 cm以內,感測之生理訊號中呼吸頻率的誤差小於0.1 Hz,心跳頻率的誤差小於0.07 Hz。 |
Abstract |
This study present a Doppler continue wave (CW) radar base on a distributed mult-input multi-output (MIMO) antenna array technology. In the experiment, the time-division multiplexing was used in the transmitter (TX) to make the mixed array signal in the receiver (RX) can be separated. Besides, the four TX antennas and 4 RX antennas were divided into two sets of antennas in order to achieve the 2D mapping. After separating the array signal, the Doppler weighted DOA estimation proposed in this study was conducted to evaluate the DOA information of multitargets. The frequency estimation algorithm (FEA) was used to improve the effectiveness of DOA estimation. The digital beamforming was then performed to recover the Doppler signal of different target at different angle. The results prove that the proposed DOA estimation and digital beamforming method can not only accurately determine the targets’ position but also obtain their Doppler information reliably. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2以距離定位之雷達 3 1.3以角度定位之雷達 6 1.4 二維定位雷達系統回顧 8 1.5 章節規劃 11 第二章 硬體架構 12 2.1系統架構介紹 12 2.2 基於分時多工之多輸入多輸出之相位陣列天線 13 2.2.1 單輸入多輸出雷達介紹 13 2.2.2 多輸入多輸出雷達介紹 14 2.2.3 分散式MIMO天線設置 17 2.3 低中頻接收機 18 第三章 訊號處理 22 3.1 到達角估計 22 3.2 都卜勒權重法進行到達角估計 25 3.2.1理論說明 25 3.2.2 模擬驗證及討論 27 3.3 基於角度之二維定位 32 3.4 波束成型 33 3.4.1理論說明 33 3.4.2模擬驗證及討論 36 第四章 目標追蹤及生理監測實驗 38 4.1前言 38 4.2系統實驗設置 38 4.3 實驗校正設置 40 4.4致動器實驗 42 4.4.1單金屬板驗證 42 4.4.2雙金屬板實驗 45 4.5人體定位及生理訊號追蹤實驗 50 4.5.1 雙人定位追蹤實驗 50 4.5.2 三人定位追蹤實驗 53 第五章 結論 57 參考文獻 58 |
參考文獻 References |
[1] Wikipedia. “List Of Mobile Phone Gernerations.” [Online]. Available: https://en.wikipedia.org/wiki/List_of_mobile_phone_generations [2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2347-2376, 2015. [3] S. Karnouskos, “Self-Driving Car Acceptance and the Role of Ethics,” IEEE Trans. Eng. Manag., vol. 67, no. 2, pp. 252-265, 2020. [4] W. Li, R. J. Piechocki, K. Woodbridge, C. Tang, and K. Chetty, “Passive WiFi Radar for Human Sensing Using a Stand-Alone Access Point,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 3, pp. 1986-1998, 2021. [5] OMRON. “HBP-9030.” [Online]. Available: https://www.omronhealthcare.com.tw/mobile/product/ins.php?index_prm_id=0&index_id=118 [6] RTsystem. “9570手指式血氧飽和測量儀-聯杏股份有限公司.” [Online]. Available: https://www.rtsystem.com.tw/product-03-product47 [7] EC-2H System. “Labtech.” [Online]. Available: https://www.omronhealthcare.com.tw/mobile/product/ins.php?index_prm_id=0&index_id=115 [8] E. M. Nowara, T. K. Marks, H. Mansour, and A. Veeraraghavan, “SparsePPG: Towards Driver Monitoring Using Camera-Based Vital Signs Estimation in Near-Infrared,” in Proc. IEEE CVPRW, June 2018 ,pp. 1272-1281 [9] A. K. Abbas, K. Heimann, K. Jergus, T. Orlikowsky, and S. Leonhardt, “Neonatal non-contact respiratory monitoring based on real-time infrared thermography,” BioMed,Eng. OnLine, vol. 10, no. 1, p. 93, 2011. [10] I. Sadek, T. T. S. Heng, E. Seet, and B. Abdulrazak, “A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study,” J. Med. Internet Res., vol. 22, no. 9, p. e18297, 2020. [11] C. Li et al., “A Review on Recent Progress of Portable Short-Range Noncontact Microwave Radar Systems,” IEEE Trans. Microw Theory Techn., vol. 65, no. 5, pp. 1692-1706, 2017. [12] L. Ren, Y. S. Koo, H. Wang, Y. Wang, Q. Liu, and A. E. Fathy, “Noncontact Multiple Heartbeats Detection and Subject Localization Using UWB Impulse Doppler Radar,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 690-692, 2015. [13] H. Lee, B.-H. Kim, J.-K. Park, and J.-G. Yook, “A Novel Vital-Sign Sensing Algorithm for Multiple Subjects Based on 24-GHz FMCW Doppler Radar,” Remote Sens., vol. 11, no. 10, p. 1237, 2019. [14] S. Nahar, T. Phan, F. Quaiyum, L. Ren, A. E. Fathy, and O. Kilic, “An Electromagnetic Model of Human Vital Signs Detection and Its Experimental Validation,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 2, pp. 338-349, 2018. [15] Y. Yuan, C. Lu, A. Y. K. Chen, C. H. Tseng, and C. T. M. Wu, “Noncontact Multi-Target Vital Sign Detection using Self-Injection-Locked Radar Sensor based on Metamaterial Leaky Wave Antenna,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., 2-7 June 2019 ,pp. 148-151 [16] J. Xiong, H. Hong, H. Zhang, N. Wang, H. Chu, and X. Zhu, “Multitarget Respiration Detection With Adaptive Digital Beamforming Technique Based on SIMO Radar,” IEEE Trans. Microw Theory Techn., vol. 68, no. 11, pp. 4814-4824, 2020. [17] M. Nosrati, S. Shahsavari, S. Lee, H. Wang, and N. Tavassolian, “A Concurrent Dual-Beam Phased-Array Doppler Radar Using MIMO Beamforming Techniques for Short-Range Vital-Signs Monitoring,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2390-2404, 2019. [18] X. Shang, J. Liu, and J. Li, “Multiple Object Localization and Vital Sign Monitoring Using IR-UWB MIMO Radar,” IEEE Trans. Aero. Elec. Sys., vol. 56, no. 6, pp. 4437-4450, 2020. [19] F. Qi et al., “Generalization of Channel Micro-Doppler Capacity Evaluation for Improved Finer-Grained Human Activity Classification Using MIMO UWB Radar,” IEEE Trans. Microw Theory Techn., vol. 69, no. 11, pp. 4748-4761, 2021. [20] G. Wang, C. Gu, T. Inoue, and C. Li, “A Hybrid FMCW-Interferometry Radar for Indoor Precise Positioning and Versatile Life Activity Monitoring,” IEEE Trans. Microw Theory Techn., vol. 62, no. 11, pp. 2812-2822, 2014. [21] M. Mercuri et al., “2-D Localization, Angular Separation and Vital Signs Monitoring Using a SISO FMCW Radar for Smart Long-Term Health Monitoring Environments,” IEEE Internet Things J., vol. 8, no. 14, pp. 11065-11077, 2021. [22] Z. Fang et al., “Wide Field-of-View Locating and Multimodal Vital Sign Monitoring Based on ${X}$ -Band CMOS-Integrated Phased-Array Radar Sensor,” IEEE Trans. Microw Theory Techn., vol. 68, no. 9, pp. 4054-4065, 2020. [23] F. Wang, X. Zeng, C. Wu, B. Wang, and K. J. R. Liu, “mmHRV: Contactless Heart Rate Variability Monitoring Using Millimeter-Wave Radio,” IEEE Internet Things J., vol. 8, no. 22, pp. 16623-16636, 2021. [24] W.-C. Su, P.-H. Juan, D.-M. Chian, T.-S. J. Horng, C.-K. Wen, and F.-K. Wang, “2-D Self-Injection-Locked Doppler Radar for Locating People and Monitoring Their Vital Signs,” IEEE Trans. Microw Theory Techn., vol. 69, no. 1, pp. 1016-1026, 2021. [25] J. Yan, H. Hong, H. Zhao, Y. Li, C. Gu, and X. Zhu, “Through-Wall Multiple Targets Vital Signs Tracking Based on VMD Algorithm,” Sensors, vol. 16, no. 8, p. 1293, 2016. [26] D. Wang, S. Yoo, and S. H. Cho, “Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs,” Sensors, vol. 20, no. 22, p. 6695, 2020. [27] V. Mérelle, A. Gaugue, G. Louis, and M. Ménard, “UWB pulse radar for micro-motion detection,” in Proc. Int. Conf. UWBUSIS, Sept. 2016 ,pp. 152-155 [28] M. Kim, D. Hong, and S. Park, “A Study on the Amplitude Comparison Monopulse Algorithm,” Applied Sciences, vol. 10, no. 11, p. 3966, 2020. [29] S. M. M. Islam, O. Boric-Lubecke, and V. M. Lubekce, “Concurrent Respiration Monitoring of Multiple Subjects by Phase-Comparison Monopulse Radar Using Independent Component Analysis (ICA) With JADE Algorithm and Direction of Arrival (DOA),” IEEE Access, vol. 8, pp. 73558-73569, 2020. [30] X. Chen, W. Zhang, W. Rhee, and Z. Wang, “A $\Delta \Sigma$ -TDC-Based Beamforming Method for Vital Sign Detection Radar Systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 12, pp. 932-936, 2014. [31] Y. Ding, G. Huang, J. Hu, Z. Li, J. Zhang, and X. Liu, “Indoor Target Tracking Using Dual-Frequency Continuous-Wave Radar Based on the Range-Only Measurements,” IEEE Trans. Instrum. Meas., vol. 69, no. 8, pp. 5385-5394, 2020. [32] S. Yu-Sheng, C. Chia-Chan, G. Jhe-Jyun, and C. Sheng-Fuh, “2-D wireless human subjects positioning system based on respiration detections,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., June 2012 ,pp. 1-3 [33] H. Sun, F. Brigui, and M. Lesturgie, “Analysis and comparison of MIMO radar waveforms,” in Proc. Int. Radar Conf., Oct. 2014 ,pp. 1-6 [34] K. Ki-Man, Y. In-Sic, C. Seung-Yong, and O. Won-Tchon, “Passive-range estimation using dual focused beamformers,” IEEE J. Oceanic Eng., vol. 27, no. 3, pp. 638-641, 2002. [35] M. Yang, W. Li, and W. Zhang, “FFT Angle Measurement Method Based on Sparse Line Array,” in Proc. Chin. Control Conf., July 2020 ,pp. 308–3086 [36] D.-M. Chian, C.-K. Wen, F.-K. Wang, and K.-K. Wong, “Signal Separation and Tracking Algorithm for Multi-Person Vital Signs by Using Doppler Radar,” IEEE Trans. Biomed. Circ. Sys., vol. 14, no. 6, pp. 1346-1361, 2020. [37] B. Mamandipoor, D. Ramasamy, and U. Madhow, “Newtonized Orthogonal Matching Pursuit: Frequency Estimation Over the Continuum,” IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5066-5081, 2016. [38] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. 3rd Edition. 2012. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-09-07 校外 Off-campus:開放下載的時間 available 2025-09-07 您的 IP(校外) 位址是 3.138.126.124 現在時間是 2024-11-22 論文校外開放下載的時間是 2025-09-07 Your IP address is 3.138.126.124 The current date is 2024-11-22 This thesis will be available to you on 2025-09-07. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-09-07 |
QR Code |