論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-09-11
校外 Off-campus:開放下載的時間 available 2026-09-11
論文名稱 Title |
二硫族化鎝塊材及單層薄膜的穩定性及電子結構特性 Stability and Electronic Properties of Bulk and Monolayer Technetium Dichalcogenides TcX2 (X = S, Se, or Te) |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
62 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-08-27 |
繳交日期 Date of Submission |
2021-09-11 |
關鍵字 Keywords |
第一原理、鎝二硫族化物、結構穩定性、電子性質、熱電性值、功能化 first-principles, technetium dichalcogenides, stability, electronic properties, thermoelectric, functionalization |
||
統計 Statistics |
本論文已被瀏覽 169 次,被下載 0 次 The thesis/dissertation has been browsed 169 times, has been downloaded 0 times. |
中文摘要 |
摘要 在過渡金屬二硫族化物中,鎝二硫族化物TcX2,其中 X 為硫(S),硒(Se)或碲(Te),其中鎝是在過渡金屬二硫族化物研究中最少的材料之一。透過第一原理計算,我們系統地研究 TcX2塊材和單層結構的 1T'', 1T', 1T 和 2H 結構的穩定性、電子特性以及熱電特性,並且於材料上通過氫原子單面和雙面吸附了解性質上的轉變。從形成能計算結果,我們觀察到 TcX2塊材和單層結構以1T''結構呈現。此外,這些塊材和單層的聲子能譜結果可以推斷 1T''結構在熱力學上是穩定的,表示了 TcTe2在實驗上合成的可能性。在電子特性的部分,塊材1T''結構的TcTe2,TcSe2 和 TcS2 的能帶能隙為間接能隙,分別為0.37、1.01和1.19電子伏特。對於單層結構,維持間接能隙,但能隙變大,分別為 1.21、1.60和1.87 電子伏特。此外,1T''單層結構可能擁有良好的熱電材料性質。最後,我們發現 TcS2 單層結構通過氫原子吸附導致結構相變,從 1T'' 轉變為 1T'結構,而 TcSe2 和 TcTe2 保持 1T''結構。這些發現為 TcX2 的結構穩定性、強大的電子特性和優異的熱電特性提供了重要的證據,而這些特性將可用於光電和熱電的相關應用。 |
Abstract |
Abstract Among the transition metal dichalcogenides, technetium dichalcogenides (TcX2 where X = S, Se, or Te) is one of the least investigated materials. Using first-principles calculations, we systematically studied the structural stability and electronic properties of TcX2 in 1T’’, 1T’, 1T, and 2H phases for the bulk and monolayer structures, as well as the thermoelectric properties, and functionalization through single-sided and double-sided hydrogenation of the monolayer phase. From the formation energy calculations, we observed that the most energetically favorable bulk and monolayer phase of TcX2 is the 1T’’ structure. Moreover, the corresponding bulk and monolayer phonon dispersion results revealed that the 1T’’ phase is thermodynamically stable. This finding implies the possible synthesis of TcTe2. With regards to the electronic properties, bulk 1T’’-TcTe2, TcSe2, and TcS2 exhibit indirect band gaps of 0.37, 1.01, and 1.19 eV, respectively. For the monolayer phase, increased indirect band gaps of 1.21, 1.64, and 1.87 eV, respectively, were observed. Moreover, the thermoelectric properties for 1T’’ monolayers show that these materials have a good potential as thermoelectric materials. Finally, we found that the functionalization of TcS2 monolayer through hydrogenation resulted in a structural phase transition from 1T’’ to 1T’, while TcSe2 and TcTe2 remained to be 1T’’. Our findings provide crucial evidence regarding the structural stability, robust electronic properties, and excellent thermoelectric properties of TcX2 for potential optoelectronic and thermoelectric applications. |
目次 Table of Contents |
Table of contents 論文審定書..................................................................... i Acknowledgements........................................................ ii 摘要................................................................................. iii Abstract........................................................................... iv Table of content.............................................................. v List of figures.................................................................. vii List of tables.................................................................... ix Chapter I.......................................................................... 1 Introduction.................................................................... 1 1.1. Two-Dimensional (2D) Materials............................. 1 1.2. Transition Metals Dichalcogenides (TMDs)............. 2 1.3. Technetium Dichalcogenides (TcX2, X=S, Se, or Te) ......................................................................................... 3 Chapter II........................................................................ 6 Methodology................................................................... 6 2.1. Computational Procedure...................................... 6 2.2. Hybrid Functional Calculations.............................. 7 2.3. Dudarev GGA+U Calculations................................. 8 Chapter III....................................................................... 9 Results and Discussion.................................................. 9 3.1. Structures and Stability of Bulk TcX2..................... 9 3.2. Electronic Properties of Bulk TcX2......................... 14 3.3. Structures and Stability Monolayer TcX2............... 17 3.4. Electronic Properties of Monolayer TcX2............... 19 3.5. Thermoelectric Properties of Monolayer TcX2...... 22 3.6. Hydrogenation of Monolayer of TcX2.................... 28 Chapter IV....................................................................... 34 Conclusion..................................................................... 34 References..................................................................... 36 Appendix........................................................................ 45 |
參考文獻 References |
References [1] S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene,” Small, vol. 11, no. 6, pp. 640–652, Feb. 2015, doi: 10.1002/smll.201402041. [2] N. R. Glavin et al., “Emerging Applications of Elemental 2D Materials,” Adv. Mater., vol. 32, no. 7, p. 1904302, Feb. 2020, doi: 10.1002/adma.201904302. [3] S. Yang, C. Jiang, and S. Wei, “Gas sensing in 2D materials,” Appl. Phys. Rev., vol. 4, no. 2, p. 021304, Jun. 2017, doi: 10.1063/1.4983310. [4] J. Yuhara et al., “Large area planar stanene epitaxially grown on Ag(1 1 1),” 2D Mater., vol. 5, no. 2, p. 025002, Jan. 2018, doi: 10.1088/2053-1583/aa9ea0. [5] C. Grazianetti, E. Cinquanta, and A. Molle, “Two-dimensional silicon: the advent of silicene,” 2D Mater., vol. 3, no. 1, p. 012001, Jan. 2016, doi: 10.1088/2053-1583/3/1/012001. [6] F. Zhu et al., “Epitaxial growth of two-dimensional stanene,” Nat. Mater., vol. 14, no. 10, pp. 1020–1025, Oct. 2015, doi: 10.1038/nmat4384. [7] K. S. Novoselov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, Oct. 2004, doi: 10.1126/science.1102896. [8] X. Xiao, H. Wang, P. Urbankowski, and Y. Gogotsi, “Topochemical synthesis of 2D materials,” Chem. Soc. Rev., vol. 47, no. 23, pp. 8744–8765, 2018, doi: 10.1039/C8CS00649K. [9] B. Aufray et al., “Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene,” Appl. Phys. Lett., vol. 96, no. 18, p. 183102, May 2010, doi: 10.1063/1.3419932. [10] L. Li et al., “Black phosphorus field-effect transistors,” Nat. Nanotechnol., vol. 9, no. 5, pp. 372–377, May 2014, doi: 10.1038/nnano.2014.35. [11] H. O. H. Churchill and P. Jarillo-Herrero, “Phosphorus joins the family,” Nat. Nanotechnol., vol. 9, no. 5, pp. 330–331, May 2014, doi: 10.1038/nnano.2014.85. [12] M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, “Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene,” New J. Phys., vol. 16, no. 9, p. 095002, Sep. 2014, doi: 10.1088/1367-2630/16/9/095002. [13] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, Mar. 2007, doi: 10.1038/nmat1849. [14] C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, and A. Govindaraj, “Graphene, the new nanocarbon,” J. Mater. Chem., vol. 19, no. 17, p. 2457, 2009, doi: 10.1039/b815239j. [15] A. K. Geim, “Graphene: Status and Prospects,” Science, vol. 324, no. 5934, pp. 1530–1534, Jun. 2009, doi: 10.1126/science.1158877. [16] A. C. Ferrari et al., “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, Oct. 2006, doi: 10.1103/PhysRevLett.97.187401. [17] P. Ajayan, P. Kim, and K. Banerjee, “Two-dimensional van der Waals materials,” Phys. Today, vol. 69, no. 9, pp. 38–44, Sep. 2016, doi: 10.1063/PT.3.3297. [18] Z.-Q. Huang, M.-L. Xu, G. Macam, C.-H. Hsu, and F.-C. Chuang, “Large-gap topological insulators in functionalized ordered double transition metal carbide MXenes,” Phys. Rev. B, vol. 102, no. 7, p. 075306, Aug. 2020, doi: 10.1103/PhysRevB.102.075306. [19] M. Xin, J. Li, Z. Ma, L. Pan, and Y. Shi, “MXenes and Their Applications in Wearable Sensors,” Front. Chem., vol. 8, p. 297, Apr. 2020, doi: 10.3389/fchem.2020.00297. [20] C. Zhang, Y. Nie, S. Sanvito, and A. Du, “First-Principles Prediction of a Room-Temperature Ferromagnetic Janus VSSe Monolayer with Piezoelectricity, Ferroelasticity, and Large Valley Polarization,” Nano Lett., vol. 19, no. 2, pp. 1366–1370, Feb. 2019, doi: 10.1021/acs.nanolett.8b05050. [21] P. Wang et al., “Quasiparticle Band Structure and Optical Properties of the Janus Monolayer and Bilayer SnSSe,” J. Phys. Chem. C, vol. 124, no. 43, pp. 23832–23838, Oct. 2020, doi: 10.1021/acs.jpcc.0c06186. [22] L. Zhang et al., “Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications,” J. Mater. Chem. A, vol. 8, no. 18, pp. 8813–8830, 2020, doi: 10.1039/D0TA01999B. [23] R. A. B. Villaos et al., “Thickness dependent electronic properties of Pt dichalcogenides,” Npj 2D Mater. Appl., vol. 3, no. 1, p. 2, Dec. 2019, doi: 10.1038/s41699-018-0085-z. [24] L.-Y. Feng, R. A. B. Villaos, Z.-Q. Huang, C.-H. Hsu, and F.-C. Chuang, “Layer-dependent band engineering of Pd dichalcogenides: a first-principles study,” New J. Phys., vol. 22, no. 5, p. 053010, May 2020, doi: 10.1088/1367-2630/ab7d7a. [25] L.-Y. Feng et al., “Magnetic and topological properties in hydrogenated transition metal dichalcogenide monolayers,” Chin. J. Phys., vol. 66, pp. 15–23, Aug. 2020, doi: 10.1016/j.cjph.2020.03.018. [26] R. A. B. Villaos et al., “Evolution of the Electronic Properties of ZrX2 (X = S, Se, or Te) Thin Films under Varying Thickness,” J. Phys. Chem. C, vol. 125, no. 1, pp. 1134–1142, Jan. 2021, doi: 10.1021/acs.jpcc.0c10085. [27] H. N. Cruzado et al., “Band Engineering and Van Hove Singularity on HfX2 Thin Films (X = S, Se, or Te),” ACS Appl. Electron. Mater., vol. 3, no. 3, pp. 1071–1079, Mar. 2021, doi: 10.1021/acsaelm.0c00907. [28] P. Johari and V. B. Shenoy, “Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains,” ACS Nano, vol. 6, no. 6, pp. 5449–5456, Jun. 2012, doi: 10.1021/nn301320r. [29] M. Wu et al., “Synthesis of two‐dimensional transition metal dichalcogenides for electronics and optoelectronics,” InfoMat, vol. 3, no. 4, pp. 362–396, Apr. 2021, doi: 10.1002/inf2.12161. [30] A. V. Kolobov and J. Tominaga, Two-Dimensional Transition-Metal Dichalcogenides, 1st ed. 2016. Cham: Springer International Publishing : Imprint: Springer, 2016. doi: 10.1007/978-3-319-31450-1. [31] A. B. Kaul, “Two-dimensional layered materials: Structure, properties, and prospects for device applications,” J. Mater. Res., vol. 29, no. 3, pp. 348–361, Feb. 2014, doi: 10.1557/jmr.2014.6. [32] Z. Qian, L. Jiao, and L. Xie, “Phase Engineering of TWO‐DIMENSIONAL Transition Metal Dichalcogenides,” Chin. J. Chem., vol. 38, no. 7, pp. 753–760, Jul. 2020, doi: 10.1002/cjoc.202000064. [33] I. Dodony, M. Posfal, and P. R. Buseck, “Structural relationship between pyrite and marcasite,” Am. Mineral., vol. 81, no. 1–2, pp. 119–125, Feb. 1996, doi: 10.2138/am-1996-1-215. [34] G. E. Boyd, “Technetium and promethium,” J. Chem. Educ., vol. 36, no. 1, p. 3, Jan. 1959, doi: 10.1021/ed036p3. [35] E. V. Johnstone, M. A. Yates, F. Poineau, A. P. Sattelberger, and K. R. Czerwinski, “Technetium: The First Radioelement on the Periodic Table,” J. Chem. Educ., vol. 94, no. 3, pp. 320–326, Mar. 2017, doi: 10.1021/acs.jchemed.6b00343. [36] J. C. Wildervanck and F. Jellinek, “The dichalcogenides of technetium and rhenium,” J. Common Met., vol. 24, no. 1, pp. 73–81, May 1971, doi: 10.1016/0022-5088(71)90168-8. [37] M. Ferrier, W. M. Kerlin, F. Poineau, A. P. Sattelberger, and K. R. Czerwinski, “Recent developments in the synthetic chemistry of technetium disulfide,” Dalton Trans., vol. 42, no. 44, p. 15540, 2013, doi: 10.1039/c3dt52079j. [38] P. F. Weck, E. Kim, and K. R. Czerwinski, “Semiconducting layered technetium dichalcogenides: insights from first-principles,” Dalton Trans., vol. 42, no. 43, p. 15288, 2013, doi: 10.1039/c3dt51903a. [39] M. Abdulsalam and D. Joubert, “Structural, electronic and optical properties of TcX2 (X = S, Se, Te) from first principles calculations,” Comput. Mater. Sci., vol. 115, pp. 177–183, Apr. 2016, doi: 10.1016/j.commatsci.2015.12.053. [40] X. Jiang, L. Zhu, and K. L. Yao, “Thermoelectric properties of TcX2(X=S, Se, Te),” J. Alloys Compd., vol. 764, pp. 505–511, Oct. 2018, doi: 10.1016/j.jallcom.2018.06.119. [41] H.-J. Lamfers, A. Meetsma, G. A. Wiegers, and J. L. de Boer, “The crystal structure of some rhenium and technetium dichalcogenides,” J. Alloys Compd., vol. 241, no. 1–2, pp. 34–39, Aug. 1996, doi: 10.1016/0925-8388(96)02313-4. [42] C. M. Fang, G. A. Wiegers, C. Haas, and R. A. de Groot, “Electronic structures of , and in the real and the hypothetical undistorted structures,” J. Phys. Condens. Matter, vol. 9, no. 21, pp. 4411–4424, May 1997, doi: 10.1088/0953-8984/9/21/008. [43] L. Yu, Q. Yan, and A. Ruzsinszky, “Negative Poisson’s ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides,” Nat. Commun., vol. 8, no. 1, p. 15224, Aug. 2017, doi: 10.1038/ncomms15224. [44] Y. Jiao et al., “Predicting Single-Layer Technetium Dichalcogenides (TcX2 , X = S, Se) with Promising Applications in Photovoltaics and Photocatalysis,” ACS Appl. Mater. Interfaces, vol. 8, no. 8, pp. 5385–5392, Mar. 2016, doi: 10.1021/acsami.5b12606. [45] R. Xiong et al., “First-principle investigation of TcSe2 monolayer as an efficient visible light photocatalyst for water splitting hydrogen production,” Res. Chem. Intermed., vol. 43, no. 9, pp. 5271–5282, Sep. 2017, doi: 10.1007/s11164-017-3035-z. [46] Q. Zhao et al., “Flexible and Anisotropic Properties of Monolayer MX2 (M = Tc and Re; X = S, Se),” J. Phys. Chem. C, vol. 121, no. 42, pp. 23744–23751, Oct. 2017, doi: 10.1021/acs.jpcc.7b07939. [47] C.-W. Wu and D.-X. Yao, “Robust p-orbital half-metallicity and high Curie-temperature in the hole-doped anisotropic TcX2 ( X = S , Se ) nanosheets,” J. Magn. Magn. Mater., vol. 478, pp. 68–76, May 2019, doi: 10.1016/j.jmmm.2019.01.085. [48] C. N. M. Ouma, K. O. Obodo, C. Parlak, and G. O. Amolo, “Effect of 3d transition metal substitutional dopants and adatoms on monolayer TcS2 ab initio insights,” Phys. E Low-Dimens. Syst. Nanostructures, vol. 123, p. 114165, Sep. 2020, doi: 10.1016/j.physe.2020.114165. [49] C. N. M. Ouma, K. O. Obodo, M. Braun, G. O. Amolo, and D. Bessarabov, “Insights on hydrogen evolution reaction in transition metal doped monolayer TcS2 from density functional theory calculations,” Appl. Surf. Sci., vol. 470, pp. 107–113, Mar. 2019, doi: 10.1016/j.apsusc.2018.11.044. [50] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, no. 3B, pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864. [51] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, no. 4A, pp. A1133–A1138, Nov. 1965, doi: 10.1103/PhysRev.140.A1133. [52] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, pp. 11169–11186, Oct. 1996, doi: 10.1103/PhysRevB.54.11169. [53] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, vol. 47, no. 1, pp. 558–561, Jan. 1993, doi: 10.1103/PhysRevB.47.558. [54] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, vol. 59, no. 3, pp. 1758–1775, Jan. 1999, doi: 10.1103/PhysRevB.59.1758. [55] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, Oct. 1996, doi: 10.1103/PhysRevLett.77.3865. [56] J. Klimeš, D. R. Bowler, and A. Michaelides, “Chemical accuracy for the van der Waals density functional,” J. Phys. Condens. Matter, vol. 22, no. 2, p. 022201, Jan. 2010, doi: 10.1088/0953-8984/22/2/022201. [57] J. Klimeš, D. R. Bowler, and A. Michaelides, “Van der Waals density functionals applied to solids,” Phys. Rev. B, vol. 83, no. 19, p. 195131, May 2011, doi: 10.1103/PhysRevB.83.195131. [58] D. J. Chadi and M. L. Cohen, “Special Points in the Brillouin Zone,” Phys. Rev. B, vol. 8, no. 12, pp. 5747–5753, Dec. 1973, doi: 10.1103/PhysRevB.8.5747. [59] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B, vol. 57, no. 3, pp. 1505–1509, Jan. 1998, doi: 10.1103/PhysRevB.57.1505. [60] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys., vol. 125, no. 22, p. 224106, Dec. 2006, doi: 10.1063/1.2404663. [61] A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr. Mater., vol. 108, pp. 1–5, Nov. 2015, doi: 10.1016/j.scriptamat.2015.07.021. [62] G. Madsen, J. Carrete, and M. Verstraete, “BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients,” Comput Phys Commun, 2018, doi: 10.1016/j.cpc.2018.05.010. [63] Z. D. Zheng, X. C. Wang, and W. B. Mi, “Tunable electronic structure of monolayer semiconductor g-C2N by adsorbing transition metals: A first-principles study,” Carbon, vol. 109, pp. 764–770, Nov. 2016, doi: 10.1016/j.carbon.2016.08.088. [64] M. Wu, C. Cao, and J. Z. Jiang, “Electronic structure of substitutionally Mn-doped graphene,” New J. Phys., vol. 12, no. 6, p. 063020, Jun. 2010, doi: 10.1088/1367-2630/12/6/063020. [65] J.-H. Choi and S.-H. Jhi, “Origin of distorted 1T -phase ReS2 : first-principles study,” J. Phys. Condens. Matter, vol. 30, no. 10, p. 105403, Mar. 2018, doi: 10.1088/1361-648X/aaac95. [66] S. J. Blundell and K. M. Blundell, Concepts in Thermal Physics. Oxford University Press, 2009. doi: 10.1093/acprof:oso/9780199562091.001.0001. [67] G. K. H. Madsen and D. J. Singh, “BoltzTraP. A code for calculating band-structure dependent quantities,” Comput. Phys. Commun., vol. 175, no. 1, pp. 67–71, Jul. 2006, doi: 10.1016/j.cpc.2006.03.007. [68] Y. Y. Wu, X. L. Zhu, H. Y. Yang, Z. G. Wang, Y. H. Li, and B. T. Wang, “First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity,” Chin. Phys. B, vol. 29, no. 8, p. 087202, Jul. 2020, doi: 10.1088/1674-1056/ab973c. [69] Y. Qu, H. Pan, and C. T. Kwok, “Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties,” Sci. Rep., vol. 6, no. 1, p. 34186, Sep. 2016, doi: 10.1038/srep34186. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-09-11 校外 Off-campus:開放下載的時間 available 2026-09-11 您的 IP(校外) 位址是 18.224.184.62 現在時間是 2025-05-03 論文校外開放下載的時間是 2026-09-11 Your IP address is 18.224.184.62 The current date is 2025-05-03 This thesis will be available to you on 2026-09-11. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-09-11 |
QR Code |