論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-09-12
校外 Off-campus:開放下載的時間 available 2025-09-12
論文名稱 Title |
應用於相位與自我注入鎖定雷達之高準度生理監測演算法 Algorithm for High-Accuracy Vital Sign Monitoring with Phase- and Self-Injection-Locked Radars |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
73 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-09-02 |
繳交日期 Date of Submission |
2022-09-12 |
關鍵字 Keywords |
心率變異性、呼吸竇性心律不整、非接觸式生命體徵檢測、離散小波轉換、變分模態分解、餘弦轉換、可變窗口長度技術 heart rate variability, respiratory sinus arrhythmia, non-contact vital sign detection, discrete wavelet transform, variational mode decomposition, cosine transform, variable window length |
||
統計 Statistics |
本論文已被瀏覽 239 次,被下載 0 次 The thesis/dissertation has been browsed 239 times, has been downloaded 0 times. |
中文摘要 |
本論文將基於心率變異性與呼吸竇性心律不整兩項議題,心率變異性可表明出人的健康狀況和精神壓力,呼吸竇性心律不整則是影響心率的常被討論的一項因素。而對於量測心率變異性,需要在短時間窗口的情況下判斷心率,這在使用都卜勒雷達系統進行非接觸式生命體徵檢測中是一項挑戰,以往研究大多使用長週期時間窗口來保證在頻譜上使用峰值搜索方法進行心率測量時有足夠的頻譜分辨率,當使用小於5秒的時間窗口時,會有頻譜分辨率不足的問題,使準確度顯著下降。此外,還須考慮到通過雷達訊號檢測心跳的性能是很容易因呼吸、雜訊與身體運動影響而降低。所以,要如何提取出乾淨且未失真的心跳訊號也是一項挑戰。 針對這些挑戰,本論文提出一套訊號處理流程,首先,對雷達輸出的正交訊號進行反正切解調後,再透過離散小波轉換與變分模態分解兩種方式來分解重建生理訊號,得到較為乾淨的心跳與呼吸訊號,接著,使用了餘弦轉換結合可變窗口長度技術的演算法來改善頻譜分辨率的問題,並可減輕非線性的干擾。在模擬與實際的生理監測實驗中,可實現1至2秒短時間窗口分析,呼吸與心跳量測與分析的平均誤差分別僅為每分鐘0.41493下與每分鐘2.4735下。 |
Abstract |
This thesis will be based on the two topics of heart rate variability and respiratory sinus arrhythmia. Heart rate variability can indicate a person's health and mental stress. Respiratory sinus arrhythmia is a frequently discussed factor affecting heart rate. To measure heart rate variability, the heart rate needs to be judged in a short-time window, which is a challenge for non-contact vital sign detection using Doppler radar systems. Most previous studies have used long period time windows to ensure sufficient spectral resolution when using peak search method for heart rate measurements on the spectrum. When using a time window of less than 5 seconds, insufficient spectral resolution occurs, resulting in a significant decrease in accuracy. In addition, it must be taken into account that the performance of radar signals in detecting heartbeats is susceptible to reduced accuracy due to the influence of breathing, noise, and body movements. Therefore, how to extract a clean and undistorted heartbeat signal is also a challenge. In response to these challenges, this thesis proposes a signal processing process. First, the quadrature output signals of the radar are demodulated by arctangent, and then the vital sign signal is decomposed and reconstructed by discrete wavelet transform and variational mode decomposition. The relatively clean heartbeat and breath signal can be obtained. After that, cosine transform with varying window length is used to improve spectral resolution and mitigate nonlinear interference. In simulation and vital sign monitoring experiments, short-time window analysis of 1 to 2 seconds can be achieved, and the average errors of respiration and heartbeat measurement and analysis are only 0.41493 beats per minute and 2.4735 beats per minute, respectively. |
目次 Table of Contents |
論文審定書i 誌謝ii 摘要iii Abstractiv 目錄v 圖次vii 表次ix 第一章序論1 1.1 研究背景與動機1 1.2 雷達2 1.3 演算法文獻回顧4 1.3.1 訊號解調法4 1.3.2 小波轉換6 1.3.3 模態分解法7 1.4 章節規劃9 第二章 系統架構與演算法理論10 2.1 正交相位與自我注入鎖定雷達10 2.2 離散小波轉換12 2.2.1 離散小波轉換12 2.2.2 最大重疊離散小波轉換14 2.3 變分模態分解16 2.4餘弦轉換結合可變窗口長度技術20 第三章 模擬訊號及演算法結果24 3.1 模擬呼吸竇性心律不整24 3.1.1 使用頻率調變訊號模擬呼吸竇性心律不整24 3.1.2 窗口長度分析27 3.2 訊號分解演算法之效果30 3.2.1 離散小波轉換 vs. 最大重疊離散小波轉換30 3.2.2 變分模態分解34 3.2.3 最大重疊離散小波轉換+變分模態分解36 3.3 模擬結果評估比較37 第四章 生理感測實驗42 4.1 雷達實驗設置42 4.2 生理感測實驗結果46 4.3 短時訊號分解結果57 第五章 結論59 參考文獻60 |
參考文獻 References |
[1] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013. [2] A. Al-Naji, K. Gibson, S.-H. Lee and J. Chahl, “Monitoring of cardiorespiratory signal: Principles of remote measurements and review of methods,” IEEE Access, vol. 5, pp. 15776-15790, 2017. [3] F.-K. Wang et al., “Review of self-injection-locked radar systems for noncontact detection of vital signs,” IEEE J. Electromagn., RF Microw. Med. Biol., vol. 4, no. 4, pp. 294-307, Dec. 2020. [4] J. Tu and J. Lin, “Fast acquisition of heart rate in noncontact vital sign radar measurement using time-window-variation technique,” IEEE Trans. Instrum. Meas., vol. 65, no. 1, pp. 112-122, Jan. 2016. [5] Z. Li, W. Li, H. Lv, Y. Zhang, X. Jing and J. Wang, “A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2086-2092, May 2013. [6] N. Hafner, I. Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke and A. Host-Madsen, “Non-contact cardiopulmonary sensing with a baby monitor,” in Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2007, pp. 2300-2302. [7] A. T. Mazzeo, E. L. Monaca, R. Di Leo, F. Vita and L. B. Santamaria, “Heart rate variability: A diagnostic and prognostic tool in anesthesia and intensive care,” Acta Anaesthesiol. Scand., vol. 55, pp. 797-811, Aug. 2011. [8] M. Nosrati and N. Tavassolian, “High-accuracy heart rate variability monitoring using Doppler radar based on Gaussian pulse train modeling and FTPR algorithm,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 556-567, Jan. 2018. [9] W. Massagram, V. M. Lubecke, A. Host-Madsten, O. BoricLubecke, “Assessment of Heart Rate Variability and Respiratory Sinus Arrythmia via Doppler Radar,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 10, pp. 2542-2549, Oct. 2009. [10] Chen Ye, Kentaroh Toyoda, Tomoaki Ohtsuki, “A Stochastic Gradient Approach for Robust Heartbeat Detection With Doppler Radar Using Time-Window-Variation Technique,” IEEE Trans. Biomed. Eng., vol.66, no.6, pp.1730-1741, Jun. 2019. [11] V. L. Petrovic, M. M. Jankovic, A. V. Lupsic, V. R. Mihajlovic, and J. S. Popovic-Bozovic, “High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave Doppler radar,” IEEE Access, vol. 7, pp. 74721-74733, Jan. 2019. [12] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [13] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital-sign detection Doppler radar based on phase locked self-injection oscillator,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012. [14] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng and P. Hsu, “Phase- and self-injection-locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685-695, Jan. 2013. [15] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1073-1079, May 2007. [16] C. Li, J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 567-570. [17] J. Wang, X. Wang, L. Chen, J. Huangfu, C. Li, L. Ran, “Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm,” IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 145-153, Jan. 2014. [18] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Upper Saddle River, NJ, USA:Pearson, 2010. [19] J. Park et al., “Polyphase-basis discrete cosine transform for real-time measurement of heart rate with CW Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1644-1659, Mar. 2018. [20] J.-Y. Shih, F.-K. Wang, “Quadrature Cosine Transform (QCT) With Varying Window Length (VWL) Technique for Noncontact Vital Sign Monitoring Using a Continuous-Wave (CW) Radar,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 3, pp. 1639-1650, Mar. 2022. [21] C. Gouveia, D. Albuquerque, P. Pinho, J. Vieira, “Evaluation of Heartbeat Signal Extraction Methods Using a 5.8 GHz Doppler Radar System in a Real Application Scenario,” IEEE Sensors J., vol. 22, no. 8, pp. 7979-7989, Apr. 2022. [22] W. Hu, Z. Zhao, Y. Wang, H. Zhang and F. Lin, “Noncontact Accurate Measurement of Cardiopulmonary Activity Using a Compact Quadrature Doppler Radar Sensor,” IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 725-735, Mar. 2014. [23] M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and design,” IEEE Trans. Signal Process., vol. 40, pp. 2207-2232, 1992. [24] N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. Roy. Soc. London A Math. Phys. Eng. Sci., vol. 454, no. 1971, pp. 903-995, Mar. 1998. [25] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: A noise-assisted data analysis method,” Adv. Adapt. Data Anal., vol. 1, no. 1, pp. 1-41, Jan. 2009. [26] M. E. Torres, M. A. Colominas, G. Schlotthauer and P. Flandrin, “A complete ensemble empirical mode decomposition with adaptive noise,” in Proc. IEEE international conference on acoustics speech and signal processing, May 2011, pp. 4144-4147. [27] M. A. Colominas, G. Schlotthauer and M. E. Torres, “Improved complete ensemble EMD: A suitable tool for biomedical signal processing,” Biomed. Signal Process. Control., vol. 14, pp. 19-29, Nov. 2014. [28] K. Dragomiretskiy and D. Zosso, “Variational Mode Decomposition,” IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531-544, Feb. 2014. [29] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods,” IEEE Sensors J., vol. 19, no. 5, pp. 1905-1916, Mar. 2019. [30] K. C. Hwan and R. Aggarwal, “Wavelet transform in power systems: Part 1 general introduction to the wavelet transform,” Power Eng. J., vol. 14, no. 2, pp. 81-87, Apr. 2000. [31] D. B. Percival and A. T. Walden, “Wavelet methods for time series analysis (cambridge series in statistical and probabilistic mathematics),” 2000. [32] Y. I. Jang, J. Y. Sim, J.-R. Yang and N. K. Kwon, “The optimal selection of mother wavelet function and decomposition level for denoising of DCG signal,” Sensors, vol. 21, no. 5, pp. 1851, Mar. 2021. [33] M. Li and J. Lin, “Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8-GHz CW Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 568–576, Jan. 2018. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-09-12 校外 Off-campus:開放下載的時間 available 2025-09-12 您的 IP(校外) 位址是 13.59.234.182 現在時間是 2024-11-22 論文校外開放下載的時間是 2025-09-12 Your IP address is 13.59.234.182 The current date is 2024-11-22 This thesis will be available to you on 2025-09-12. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-09-12 |
QR Code |