Responsive image
博碩士論文 etd-0812122-173253 詳細資訊
Title page for etd-0812122-173253
論文名稱
Title
基於單次轉頻自我注入鎖定雷達之水管洩漏偵測
Pipe Leakage Detection by Using a Single-Conversion Self-Injection-Locked Radar
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-09-02
繳交日期
Date of Submission
2022-09-12
關鍵字
Keywords
自我注入鎖定雷達、水管洩漏偵測、透地雷達、頻率轉換、督普勒效應
pipeline leakage detection, ground penetrating radar, frequency-conversion, self-injection-locked (SIL) radar, doppler effect
統計
Statistics
本論文已被瀏覽 346 次,被下載 0
The thesis/dissertation has been browsed 346 times, has been downloaded 0 times.
中文摘要
本文提出了一種單次轉頻之自我注入鎖定(SCSIL)雷達,用於檢測地底下管道的洩漏狀況,該雷達架構中使用5.8 GHz 的SIL震盪器(SILO)當作訊號源,經過降頻混頻器將中心頻率移至0.433 GHz ,回波訊號再經過上混頻器升頻回5.8 GHz 注入回SILO內形成注入鎖定狀態。在論文中我們在22公分厚的土牆屏蔽下分別比較了SCSIL雷達、傳統5.8 GHz SIL雷達和0.433 GHz SIL雷達的頻率偏移量,透過增加SILO的鎖定範圍和降低傳播損耗可以提高系統靈敏度和穿透力。為了瞭解管道洩漏所造成的負壓波(NPW)表現,在MATLAB上進行模擬,並對檢測原理進行解釋。在非接觸式的地下管道洩漏中,可以利用信號的標準差(STD)來判斷管線洩漏位置,透過觀察不同的量測點成功判斷了水管狀況並定位洩漏位置,最後本論文討論了洩漏量大小和管徑大小等變量對所提出的判別法造成的趨勢為何。


Abstract
This thesis proposes a single-conversion self-injection-locked (SCSIL) radar for sensing underground pipeline leakage through moist soil. In the implemented prototype, the 5.8 GHz output signal of the SIL oscillator (SILO) down-converts to a 0.433 GHz transmit signal, and the echo signal is up-converted as the injection signal of the SILO. In experiments, the SCSIL radar, the conventional 5.8 GHz SIL radar, and conventional 0.433 GHz SIL radar were compared under the same conditional at a 22cm thick soil barrier. The system sensitivity and penetration can be both improved by increasing the SILO’s locking range and decreasing the wireless propagation loss. To understand the behavior of the negative pressure wave (NPW) caused by the pipeline leakage, the simulation on MATLAB were conducted and the detection principle were evaluated. In noncontact underground pipeline leakage detection, the standard deviation (STD) of the demodulated signals can be utilized to estimate the leak location. The leakage detection and localization were successful distinguish by observing different measurement points, furthermore, the variables like leak size and diameter of the pipeline were discussed in this thesis.

Keywords : frequency-conversion, ground penetrating radar, pipeline leakage detection, self-injection-locked (SIL) radar.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 序論 1
1.1 研究背景與測量方法 1
1.2 接觸式管線洩漏偵測技術 1
1.3 非接觸式管線洩漏偵測技術 4
1.4電磁技術感測洩漏文獻討論 7
1.5 論文架構 19
第二章 系統架構 20
2.1自我注入鎖定理論 20
2.1.1 注入鎖定模型 20
2.1.2 自我注入鎖定理論 23
2.2 單次轉頻自我注入雷達系統 28
2.3 系統驗證 33
第三章 液壓模型模擬 38
第四章 實驗與量測 45
4.1 實驗環境設置 45
4.2 管線量測結果 48
4.2.1 管線振動偵測驗證 48
4.2.2 不同洩漏量之量測結果 53
4.2.3 不同管徑之量測結果 55
第五章 結論 57
參考文獻 58

參考文獻 References
[1] "台灣自來水公司." [Online]. Available: https://www.water.gov.tw/ch/Subject/Detail/1134?nodeId=1346
[2] R. Puust, Z. Kapelan, D. A. Savic, and T. Koppel, "A review of methods for leakage management in pipe networks," Urban Water J., vol. 7, no. 1, pp. 25-45, Feb. 2010.
[3] J. Rougier, "Probabilistic leak detection in pipelines using the mass imbalance approach," J HYDRAUL RES, vol. 43, Sep. 2005.
[4] A. Afifi bin Md, S. Nordin bin, and V. Asirvadam, "Pressure point analysis for early detection system," in Proc. Signal Process. its Appl., March. 2011, pp. 103-107
[5] C. Chinwuko, H. Ifowodo, and U. O, "Transient Model-Based Leak Detection and Localization Technique for Crude Oil Pipelines: A Case of N.P.D.C, Olomoro," J. Eng. Technol., vol. 1, pp. 37-48, June. 2016.
[6] "E-RTTM Method." [Online]. Available: https://commons.wikimedia.org/wiki/File:E-RTTM_Method_PC_%28Standard%29_SVG.svg
[7] M. F. Ghazali, "Leak detection using instantaneous frequency analysis," 2012.
[8] J. Kang, Y. J. Park, J. Lee, S. H. Wang, and D. S. Eom, "Novel Leakage Detection by Ensemble CNN-SVM and Graph-Based Localization in Water Distribution Systems," IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4279-4289, Oct. 2018.
[9] S. Srirangarajan, M. Allen, A. Preis, M. Iqbal, H. Lim, and A. Whitttle, "Wavelet-based Burst Event Detection and Localization in Water Distribution Systems," J Signal Process Syst, vol. 72, pp. 1-16, Sep. 2012.
[10] Y. Gao, M. J. Brennan, P. F. Joseph, J. M. Muggleton, and O. Hunaidi, "A model of the correlation function of leak noise in buried plastic pipes," J. Sound Vib., vol. 277, no. 1, pp. 133-148, Oct. 2004.
[11] M. U. R. A. Virk, M. F. Mysorewala, L. Cheded, and I. M. Ali, "Leak Detection Using Flow-Induced Vibrations in Pressurized Wall-Mounted Water Pipelines," IEEE Access, vol. 8, pp. 188673-188687, Oct. 2020.
[12] B. Shakmak and A. Al-Habaibeh, "Detection of water leakage in buried pipes using infrared technology; A comparative study of using high and low resolution infrared cameras for evaluating distant remote detection," in Proc. IEEE Jordan Conf. Appl. Elect. Eng. Comput. Technol., Amman, Jordan, Nov. 2015, pp. 1-7
[13] Y.-b. Li and L.-y. Sun, "Leakage detection and location for long range oil pipeline using negative pressure wave technique," in Proc. Industrial Electronics and Applications, May. 2009, pp. 3220-3224
[14] M. Kothandaraman, Z. Law, E. M. A. Gnanamuthu, and C. H. Pua, "An Adaptive ICA-Based Cross-Correlation Techniques for Water Pipeline Leakage Localization Utilizing Acousto-Optic Sensors," IEEE Sens. J., vol. 20, no. 17, pp. 10021-10031, Apr. 2020.
[15] P. M. Bach and J. K. Kodikara, "Reliability of Infrared Thermography in Detecting Leaks in Buried Water Reticulation Pipes," Urban Water J., vol. 10, no. 9, pp. 4210-4224, June. 2017.
[16] G. Leucci, "Ground Penetrating Radar: The Electromagnetic Signal Attenuation and Maximum Penetration Depth," Scholarly Research Exchange, vol. 2008, Jan. 2008.
[17] S. Demirci, E. Yigit, I. H. Eskidemir, and C. Ozdemir, "Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method," NDT E Int., vol. 47, pp. 35-42, Apr. 2012.
[18] K. Esmaili and S. Chamaani, "Defect Detection of Shallow Pipes by UWB Sensor," in Proc. 2020 28th Iranian Conference on Electrical Engineering (ICEE), Aug. 2020, pp. 1-5
[19] J. Li, L. Liu, Z. Zeng, and F. Liu, "Advanced Signal Processing for Vital Sign Extraction With Applications in UWB Radar Detection of Trapped Victims in Complex Environments," Urban Water J., vol. 7, no. 3, pp. 783-791, May. 2014.
[20] A. Cataldo, E. De Benedetto, G. Cannazza, G. Leucci, L. Giorgi, and C. Demitri, "Enhancement of Leak Detection in Pipelines Through TDR/GPR Measurements," IET Sci. Meas. Technol., vol. 11, Apr. 2017.
[21] "GSSI." [Online]. Available: https://www.geophysical.com/
[22] "Mythcon." [Online]. Available: https://mythcon-shm.com/index.php/ground-penetrating-radar-gpr/
[23] M. Bimpas, A. Amditis, and N. Uzunoglu, "Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45GHz," J Appl Geophy, vol. 70, no. 3, pp. 226-236, Mar. 2010.
[24] F. Wang et al., "A Novel Vital-Sign Sensor Based on a Self-Injection-Locked Oscillator," IEEE Trans Microw Theory Tech, vol. 58, no. 12, pp. 4112-4120, 2010.
[25] F. K. Wang, T. S. Horng, J. Y. Shih, Z. J. Hsu, W. C. Su, and P. H. Juan, "See-Through-Wall (STW) Life Detector Using Self-Injection-Locked (SIL) Technology," in Proc. IEEE Asia-Pacific Microw. Conf., Dec. 2020, pp. 496-498
[26] C. Li, F. Wang, T. Horng, and K. Peng, "A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications," in Proc. IEEE Trans. Microw. Theory Techn., June. 2009, pp. 1165-1168
[27] R. Adler, "A study of locking phenomena in oscillators," Proceedings of the IRE, vol. 61, no. 10, pp. 1380-1385, June. 1946.
[28] "Aaronia AG." [Online]. Available: https://aaronia.com/antennas/powerlog-pro-series-horn/
[29] "Bernoulli's principle." [Online]. Available: https://en.wikipedia.org/wiki/Bernoulli%27s_principle
[30] "Standard deviation." [Online]. Available: https://en.wikipedia.org/wiki/Standard_deviation
[31] "吉岩科技." [Online]. Available: http://www.guyan.url.tw
[32] B. Park, O. Boric-Lubecke, and V. M. Lubecke, "Arctangent Demodulation With DC Offset Compensation in Quadrature Doppler Radar Receiver Systems," IEEE Trans Microw Theory Tech, vol. 55, no. 5, pp. 1073-1079, May. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-09-12
校外 Off-campus:開放下載的時間 available 2025-09-12

您的 IP(校外) 位址是 13.58.67.133
現在時間是 2025-04-03
論文校外開放下載的時間是 2025-09-12

Your IP address is 13.58.67.133
The current date is 2025-04-03
This thesis will be available to you on 2025-09-12.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-09-12

QR Code