論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-09-12
校外 Off-campus:開放下載的時間 available 2025-09-12
論文名稱 Title |
應用於Sub-6 GHz之可重構智慧表面設計 Design of Reconfigurable Intelligent Surface for Sub-6 GHz Applications |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
69 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-09-02 |
繳交日期 Date of Submission |
2022-09-12 |
關鍵字 Keywords |
可重構智慧表面、陣列天線、相移器、自動化量測、散射場 reconfigurable intelligent surface, array antenna, phase shifter, automatic measurement, scatter field |
||
統計 Statistics |
本論文已被瀏覽 268 次,被下載 0 次 The thesis/dissertation has been browsed 268 times, has been downloaded 0 times. |
中文摘要 |
本論文提出一種由陣列天線和RF相移器以及開路終端結合所組成的可重構智慧表面(RIS)。其原理為輻射陣列天線接收訊號,透過相移器進行相位調製並利用開路端子進行全反射,反射至接收端接收訊號。該可重構智慧表面應用於3.4至3.6 GHz,其中陣列天線部分設計為微帶貼片天線,操作範圍為3.4至3.6 GHz,中心頻率為3.5 GHz,天線採用FR4基板製作,有效控制製作成本;相移器部分則採用商用晶片HMC928LP5E以及MAPS-01044。相對於其他研究者所提出的RIS架構,其具有架構方便且靈活組裝的優勢。 本論文進行該可重構智慧表面的可行性測試並實際製作,透過架設自動化量測平台量測信號通道中的能量強度以及訊雜比,驗證本論文所提出架構帶來之效果。 |
Abstract |
This paper proposes a reconfigurable intelligent surface (RIS) composed of an array antenna, RF phase shifters and open-circuit terminals. The principle is that the radiating array antenna receives the signal, modulates the phase through the phase shifter, uses the open terminal for total reflection, and the receiver receives the signal which was modulated through the ris.The ris is applied to 3.4 to 3.6 GHz, in which the array antenna part is designed as a microstrip patch antenna, the operating range is 3.4 to 3.6 GHz, the center frequency is 3.5 GHz, and the antenna is made of FR4 substrate, which can effectively control the production cost; The shifter part uses commercial chips HMC928LP5E and MAPS-01044. The ris compared with the RIS architecture proposed by other researchers, it has the advantages of convenient architecture and flexible assembly. In this paper, the ris architecture is made and the feasibility test of the ris is carried out . By setting up an automatic measurement platform to measure the energy intensity and signal-to-noise ratio in the signal channel, the effect of the proposed architecture is verified. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 RIS架構介紹 2 1.3 章節規劃 4 第二章 RIS單元及陣列設計 5 2.1 RIS架構雛型驗證 5 2.2 RIS單元-天線架構 8 2.2.1 微帶天線理論 8 2.2.2 微帶天線設計 11 2.2.3 陣列理論 15 2.2.4 微帶天線陣列設計 17 2.3 RIS單元-相移器 25 2.3.1 類比相移器 26 2.3.2 數位相移器 27 2.4 RIS 整體架構 30 第三章 RIS單元及陣列量測 32 3.1 類比RIS量測實驗 32 3.1.1自動化控制平台 32 3.1.2 RIS單元量測 34 3.1.3 RIS一維陣列量測 36 3.1.4 RIS二維陣列量測 44 3.2 數位RIS量測實驗 46 3.2.1 數位自動化量測平台 46 3.2.2 RIS一維陣列量測 48 3.2.3 RIS二維陣列量測 51 第四章 結論與未來展望 54 參考文獻 55 |
參考文獻 References |
[1] J. G. Andrews et al., "What Will 5G Be?," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, 2014. [2] M. Agiwal, A. Roy, and N. Saxena, "Next Generation 5G Wireless Networks: A Comprehensive Survey," IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617-1655, 2016. [3] W. Saad, M. Bennis, and M. Chen, "A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems," IEEE Network, vol. 34, no. 3, pp. 134-142, 2020. [4] Z. Zhang et al., "6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies," IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28-41, 2019. [5] A. Gupta and R. K. Jha, "A Survey of 5G Network: Architecture and Emerging Technologies," IEEE Access, vol. 3, pp. 1206-1232, 2015. [6] C. X. Wang et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, vol. 52, no. 2, pp. 122-130, 2014. [7] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, "Five disruptive technology directions for 5G," IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, 2014. [8] M. Xiao et al., "Millimeter Wave Communications for Future Mobile Networks," IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1909-1935, 2017. [9] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, "An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems," IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436-453, 2016. [10] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, "Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial," IEEE Transactions on Communications, vol. 69, no. 5, pp. 3313-3351, 2021. [11] L. Dai et al., "Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results," IEEE Access, vol. 8, pp. 45913-45923, 2020. [12] F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, "Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal," Applied Physics Letters, vol. 97, no. 13, p. 134103, 2010. [13] H. Chen, W.-B. Lu, Z.-G. Liu, and M.-Y. Geng, "Microwave Programmable Graphene Metasurface," ACS Photonics, vol. 7, no. 6, pp. 1425-1435, 2020. [14] H.-X. Xu et al., "Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch," Scientific Reports, vol. 6, no. 1, p. 38255, 2016. [15] F. Costa and M. Borgese, "Electromagnetic Model of Reflective Intelligent Surfaces," IEEE Open Journal of the Communications Society, vol. 2, pp. 1577-1589, 2021. [16] W. Tang et al., "Wireless Communications with Programmable Metasurface: New Paradigms, Opportunities, and Challenges on Transceiver Design," IEEE Wireless Communications, vol. 27, no. 2, pp. 180-187, 2020. [17] X. Chen et al., "Design and Implementation of MIMO Transmission Based on Dual-Polarized Reconfigurable Intelligent Surface," IEEE Wireless Communications Letters, vol. 10, no. 10, pp. 2155-2159, 2021. [18] M. D. Renzo et al., "Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come," EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, p. 129, 2019/05/23 2019. [19] H. Jiao, H. Liu, and Z. Wang, "Reconfigurable Intelligent Surfaces aided Wireless Communication: Key Technologies and Challenges," in 2022 International Wireless Communications and Mobile Computing (IWCMC),in Proc, pp. 1364-1368, 30 May-3 June 2022 2022 [20] C. Pan et al., "Reconfigurable Intelligent Surfaces for 6G Systems: Principles, Applications, and Research Directions," IEEE Communications Magazine, vol. 59, no. 6, pp. 14-20, 2021. [21] H. Pues and A. v. d. Capelle, "Accurate transmission-line model for the rectangular microstrip antenna," IEE Proceedings H (Microwaves, Optics and Antennas), vol. 131, no. 6, pp. 334-340. [22] D. Pozar, "A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas," IEEE Transactions on Antennas and Propagation, vol. 34, no. 12, pp. 1439-1446, 1986. [23] W. L. Stutzman and G. A. Thiele, Antenna theory and design. John Wiley & Sons, 2012. [24] R. Garg, P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip antenna design handbook. Artech house, 2001. [25] S. F. Farida, P. M. Hadalgi, P. V. Hunagund, and S. R. Ara, "Effect of substrate thickness and permittivity on the characteristics of rectangular microstrip antenna," in 1998 Conference on Precision Electromagnetic Measurements Digest (Cat. No.98CH36254),in Proc, pp. 598-599, 6-10 July 1998 1998 [26] K. Budayawan, M. Isa, A. Ismail, and A. Raja Syamsul, "Implementation model of rectangular microstrip antenna with multilayer air gap," in 2011 IEEE International RF & Microwave Conference,in Proc, pp. 274-277, 12-14 Dec. 2011 2011 [27] W. H. Kummer, "Basic array theory," Proceedings of the IEEE, vol. 80, no. 1, pp. 127-140, 1992. [28] E. Levine, G. Malamud, S. Shtrikman, and D. Treves, "A study of microstrip array antennas with the feed network," IEEE Transactions on Antennas and Propagation, vol. 37, no. 4, pp. 426-434, 1989. [29] R. V. Garver, "360/spl deg/ Varactor Linear Phase Modulator," IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 3, pp. 137-147, 1969. [30] B. Biglarbegian, M. R. Nezhad-Ahmadi, M. Fakharzadeh, and S. Safavi-Naeini, "Millimeter-Wave Reflective-Type Phase Shifter in CMOS Technology," IEEE Microwave and Wireless Components Letters, vol. 19, no. 9, pp. 560-562, 2009. [31] W. Li, Y. Chen, H. Shen, and B. Zhang, "A Ka-band reflection-type analog electrically controlled phase shifter," AIP Conference Proceedings, vol. 1820, no. 1, p. 070001, 2017. [32] S. Shamsadini, I. M. Filanovsky, P. Mousavi, and K. Moez, "A 60-GHz Transmission Line Phase Shifter Using Varactors and Tunable Inductors in 65-nm CMOS Technology," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 10, pp. 2073-2084, 2018. [33] C. F. Campbell and S. A. Brown, "A compact 5-bit phase-shifter MMIC for K-band satellite communication systems," IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 12, pp. 2652-2656, 2000. [34] H. Lee and B. Min, "W-Band CMOS 4-Bit Phase Shifter for High Power and Phase Compression Points," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 1, pp. 1-5, 2015. [35] F. Meng, K. Ma, K. S. Yeo, and S. Xu, "A 57-to-64-GHz 0.094-mm2 5-bit Passive Phase Shifter in 65-nm CMOS," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1917-1925, 2016. [36] J.-H. Tsai, F.-M. Lin, and H. Xiao, "Low RMS phase error 28 GHz 5-bit switch type phase shifter for 5G applications," Electronics Letters, vol. 54, no. 20, pp. 1184-1185, 2018. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-09-12 校外 Off-campus:開放下載的時間 available 2025-09-12 您的 IP(校外) 位址是 18.191.154.132 現在時間是 2024-11-22 論文校外開放下載的時間是 2025-09-12 Your IP address is 18.191.154.132 The current date is 2024-11-22 This thesis will be available to you on 2025-09-12. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-09-12 |
QR Code |