論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
低應變速率下拉伸溫度對中錳鋼之拉伸性質與顯微組織的影響 The effect of test temperature on tensile properties and microstructure of a medium Mn steel under low strain-rate |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
128 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2017-09-08 |
繳交日期 Date of Submission |
2017-09-13 |
關鍵字 Keywords |
中錳鋼、低應變速率、拉伸性質、拉伸溫度 tensile properties, test temperature, low strain rate, medium Mn steel |
||
統計 Statistics |
本論文已被瀏覽 5941 次,被下載 1 次 The thesis/dissertation has been browsed 5941 times, has been downloaded 1 times. |
中文摘要 |
本論文研究中錳鋼材在10-5/s應變速率下拉伸溫度對拉伸性質與顯微組織的影響。實驗發現常溫下應變誘發麻田散鐵主導變形機制,使試片有最大的拉伸強度。在75℃時應變誘發麻田散鐵受到溫度效應抑制,此時變形誘發變韌鐵開始形成但仍不明顯,變韌鐵出現的數量不足以彌補麻田散鐵下降的數量使拉伸強度略為下降。拉伸溫度在150℃時有最多的變形誘發變韌鐵相轉換,使得拉伸強上升至室溫的拉伸強度。在75℃到150℃間因沃斯田鐵穩定度上升,使變形誘發麻田散鐵數量下降,但變形誘發變韌鐵的數量上升而有助於加工硬化,所以使伸長量上升至75%左右。在150℃與200℃之間變形誘發變韌鐵相轉換數量下降,拉伸強度也隨之微幅下降。在225℃以上變形誘發肥粒鐵主導變形機制,此時強度和伸長量皆隨溫度上升而明顯下降。 |
Abstract |
This study explores the effect of test temperature on tensile properties and microstructure of a medium Mn steel under low strain rate (10-5 per second). It was found that the maximum tensile strength at room temperature is mainly caused by strain-induced martensite transformation. Above 75℃, strain-induced martensite was suppressed with increasing temperature, and deformation induced banite occurred in austenite. It was close to the tensile strength under room temperature at 150℃ because of the most deformation induced banite transformation volume fraction. The elongation increased to 75% between 75℃ and 150℃, because both slow TRIP effect and increasing banite transformation provided work hardening. Between 150℃ and 200℃, volume fraction of deformation induced banite deceased, and tensile strength also decreased slightly. Up to 225℃, mechanical properties was controlled by deformation induced ferrite transformation, and strength and elongation decreased with increasing temperature. |
目次 Table of Contents |
論文審定書 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 xiii 一、前言 1 二、文獻回顧 2 2-1 麻田散鐵 2 2-1-1 麻田散鐵相轉換機制 2 2-1-2 麻田散鐵的形貌 3 2-1-3 麻田散鐵的成核 4 2-2 沃斯田鐵的穩定性 5 2-3 TRIP效應 7 2-4 應變速率對TRIP效應的影響 8 2-5 溫度對TRIP效應的影響 11 2-6 變形誘發變韌鐵相轉換(Deformation Induced Bainite,DIB) 13 三、研究目的 14 四、實驗方法 15 4-1 實驗材料 15 4-2 表面處理 15 4-3 拉伸試驗 15 4-4 顯微組織觀察 15 4-5 X光繞射分析 16 4-6 EBSD分析 16 五、實驗結果 17 5-1 機械性質 17 5-2 相分率 19 5-3 顯微結構觀察及EBSD分析 20 5-3-1 在四個不同拉伸溫度下未受拉伸變形之夾頭端組織 20 5-3-2 在不同溫度下受拉伸變形gauge區域之顯微組織 21 5-4在150℃不同應變量之拉伸組織 26 5-4-1 相分率比較 26 5-4-2 顯微組織觀察及EBSD分析 26 六、討論 28 6-1顯微組織的演化 28 6-2 拉伸性質 29 七、結論 32 八、參考文獻 33 |
參考文獻 References |
[1] G. Krauss, "Martensite in steel: strength and structure," Materials Science and Engineering: A, vol. 273–275, pp. 40-57, 1999. [2] H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, "Crystallographic features of lath martensite in low-carbon steel," Acta Materialia, vol. 54, pp. 1279-1288, 2006. [3] I. Tamura, "Deformation-induced martensitic transformation and transformation-induced plasticity in steels," Metal Science, vol. 16, pp. 245-253, 1982. [4] D. Fahr, "Stress- and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels," Metallurgical Transactions, vol. 2, pp. 1883-1892, 1971. [5] P. C. Maxwell, A. Goldberg, and J. C. Shyne, "Stress-Assisted and strain-induced martensites in FE-NI-C alloys," Metallurgical Transactions, vol. 5, pp. 1305-1318, 1974. [6] A. Shibata, S. Morito, T. Furuhara, and T. Maki, "Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys," Acta Materialia, vol. 57, pp. 483-492, 2009. [7] G. Krauss and A. R. Marder, "The morphology of martensite in iron alloys," Metallurgical Transactions, vol. 2, pp. 2343-2357, 1971. [8] J. Talonen and H. Hänninen, "Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels," Acta Materialia, vol. 55, pp. 6108-6118, 2007. [9] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and M. Ichihara, "An experimental study of the martensite nucleation and growth in 18/8 stainless steel," Acta Metallurgica, vol. 25, pp. 1151-1162, 1977. [10] J. W. Brooks, M. H. Loretto, and R. E. Smallman, "In situ observations of the formation of martensite in stainless steel," Acta Metallurgica, vol. 27, pp. 1829-1838, 1979. [11] L. E. Murr, K. P. Staudhammer, and S. S. Hecker, "Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II. Microstructural Study," Metallurgical Transactions A, vol. 13, pp. 627-635, 1982. [12] 吳季凌, "中錳鋼變形早期誘發麻田散鐵之組織研究," 國立中山大學材料與光電科學所, 2015. [13] G. B. Olson and M. Cohen, "Kinetics of strain-induced martensitic nucleation," Metallurgical Transactions A, vol. 6, pp. 791-795, 1975. [14] T. Angel, "Formation of martensite in austenitic stainless steel," J Iron Steel Inst., vol. 177, pp. 165-174, 1954. [15] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, "Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys," Materials Science and Engineering: A, vol. 387–389, pp. 158-162, 2004. [16] T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim, "Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels," Acta Materialia, vol. 58, pp. 3173-3186, 2010. [17] L. Remy and A. Pineau, "Twinning and strain-induced F.C.C. → H.C.P. transformation in the Fe-Mn-Cr-C system," Materials Science and Engineering, vol. 28, pp. 99-107, 1977. [18] K.-i. Sugimoto, N. Usui, M. Kobayashi, and S.-i. Hashimoto, "Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels," ISIJ International, vol. 32, pp. 1311-1318, 1992. [19] B. D. C. Ludovic Samek, Joost Van Slycken, Patricia Verleysen and Joris Degrieck, "Physical metallurgy of multi-phase steel for improved passenger car crash-worthiness," Steel Research Int., vol. 75, pp. 716-723, 2004. [20] J. Wang and S. Van Der Zwaag, "Stabilization mechanisms of retained austenite in transformation-induced plasticity steel," Metallurgical and Materials Transactions A, vol. 32, pp. 1527-1539, 2001. [21] L. Luo, W. Li, L. Wang, S. Zhou, and X. Jin, "Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures," Materials Science and Engineering: A, vol. 682, pp. 698-703, 2017. [22] L. Samek, E. De Moor, J. Penning, and B. C. De Cooman, "Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels," Metallurgical and Materials Transactions A, vol. 37, pp. 109-124, 2006. [23] T. N. Lomholt, Y. Adachi, A. Bastos, K. Pantleon, and M. A. J. Somers, "Partial transformation of austenite in Al–Mn–Si TRIP steel upon tensile straining: an in situ EBSD study," Materials Science and Technology, vol. 29, pp. 1383-1388, 2013. [24] B. C. De Cooman, "Structure–properties relationship in TRIP steels containing carbide-free bainite," Current Opinion in Solid State and Materials Science, vol. 8, pp. 285-303, 2004. [25] Z. H. Cai, H. Ding, R. D. K. Misra, and Z. Y. Ying, "Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content," Acta Materialia, vol. 84, pp. 229-236, 2015. [26] J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, "Effect of strain rate on the strain-induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels," Metallurgical and Materials Transactions A, vol. 36, pp. 421-432, 2005. [27] S. S. Hecker, M. G. Stout, K. P. Staudhammer, and J. L. Smith, "Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior," Metallurgical Transactions A, vol. 13, pp. 619-626, 1982. [28] M. H. Cai, W. J. Zhu, N. Stanford, L. B. Pan, Q. Chao, and P. D. Hodgson, "Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy," Materials Science and Engineering: A, vol. 653, pp. 35-42, 2016. [29] S. Lee, Y. Estrin, and B. C. De Cooman, "Effect of the Strain Rate on the TRIP–TWIP Transition in Austenitic Fe-12 pct Mn-0.6 pct C TWIP Steel," Metallurgical and Materials Transactions A, vol. 45, pp. 717-730, 2014. [30] J. A. Jiménez, M. Carsí, O. A. Ruano, and G. Frommeyer, "Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel," Materials Science and Engineering: A, vol. 508, pp. 195-199, 2009. [31] K.-I. Sugimoto, M. Kobayashi, and S.-I. Hashimoto, "Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel," Metallurgical Transactions A, vol. 23, pp. 3085-3091, 1992. [32] J. Min, J. Lin, and Y. a. Min, "Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels," Journal of Materials Processing Technology, vol. 213, pp. 818-825, 2013. [33] 朱恆逸, "碩士論文提案," 國立中山下學材料與光電科學所, 2016. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |