博碩士論文 etd-0815110-102430 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 盧世福(Shih-fu Lu) 電子郵件信箱 walter.lur@msa.hinet.net
畢業系所 材料與光電科學學系研究所( Materials and Optoelectronic Science)
畢業學位 博士(Ph.D.) 畢業時期 98學年第2學期
論文名稱(中) 聚丁二酸二丁酯及含少量丁二酸二丙酯之共聚酯的非等溫結晶與熱裂解行為
論文名稱(英) Nonisothermal Crystallization and Thermal Degradation Behaviors of Poly(butylene succinate) and its Copolyesters with Minor Amounts of Propylene Succinate
檔案
  • etd-0815110-102430.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內立即公開,校外一年後公開

    論文語文/頁數 英文/147
    統計 本論文已被瀏覽 5596 次,被下載 1203 次
    摘要(中) 聚丁二酸二丁酯poly(butylene succinate) (PBSu)及含少量丁二酸二丙酯之兩種共聚酯poly(butylene succinate-co-propylene succinate)s (PBPSu 95/5 and PBPSu 90/10)經由直接聚縮合反應製備而成。由1H 核磁共振分析儀 (NMR) 光譜分析得知,此兩種共聚酯propylene succinate (PS)含量分別為7.0及 11.5 mol%,並由13C NMR光譜鑑定獲知,此兩種共聚酯順序排列是無規的分佈。本研究利用各種方法探討此三種聚酯之非等溫結晶及熱裂解行為。以示差掃描熱量計 (DSC) 與偏光顯微鏡 (PLM) 分別在1, 2, 3, 5, 6, 10 ºC/min條件下,探討PBSu及PBPSu之非等溫結晶行為,並觀察球晶的結晶型態隨降溫速度及PS含量的轉變,球晶的成長速度藉由曲線模擬 (curve-fitting) 方式獲得,並利用 Lauritzen-Hoffman 方程式分析成長速度與區型轉移 (regime transition),結果得知PBSu、PBPSu 95/5及PBPSu 90/10的regime II轉移至regime III 溫度依次為95.6, 84.4, 77.3 ºC。
    DSC放熱曲線顯示這三種聚酯的非等溫結晶都發生在regime III範圍。利用modified Avrami, Ozawa, Mo, Friedman and Vyazovkin方程式分析DSC數據。由於此聚酯存在二次結晶現象,Ozawa方程式並不適用解釋DSC數據。所有模式分析結果及PLM實驗得知,加入少量的PS明顯抑制PBSu的結晶能力。由DSC分析聚酯之非等溫結晶後的熔融行為,皆呈現熔融-再結晶-再熔融的現象。利用衰減全反射 (attenuated total reflectance, ATR) 傅立葉轉換紅外光譜儀 (ATR-FTIR) 鑑定PBSu及PBPSu之非等溫結晶過程,發現紅外光譜在916, 955, 1045 cm-1出現結晶吸收峰。
    利用熱重分析儀 (thermogravimetric analysis, TGA)-FTIR在氮氣環境及5 ºC/min升溫下,探討三種聚酯熱分解產物。經由紅外光譜分析,分解主要產物為酸酐 (anhydride),其分解途徑係聚酯中丁二酸基之O-CH2鍵斷裂後,分解之丁二酸脫水 (dehydrate) 而形成。利用TGA在氮氣環境及1, 3, 5, 10 ºC/min升溫下,探討聚酯之熱穩定性。應用Friedman 及Ozawa此兩種 Model-free方程式,探討在不同熱重損失程度下之熱裂解活化能,結果顯示添加少量PS並不會明顯影響聚酯的熱穩定性。應用Model-fitting方法以決定重量損失函數f(α)及其活化能。結果顯示自催化級數 (autocatalysis nth-order) 反應機制函數, f(α)=αm(1-α)n, 比級數(nth-order)反應機制函數, f(α)=(1-α)n, 更符合實驗結果。經由獲得之活化能數值,計算聚酯材料之失效溫度 (failure temperature, Tf),當重量損失達5 %及承受時間為60,000小時下,PBSu、PBPSu 95/5及PBPSu 90/10之Tf 分別為160.7, 155.5, 159.3 ºC。
    摘要(英) Poly(butylene succinate) (PBSu) and two poly(butylene succinate-co-propylene succinate)s (PBPSu 95/5 and PBPSu 90/10) were synthesized via the direct polycondensation reaction. The copolyesters were characterized as having 7.0 and 11.5 mol% propylene succinate (PS) units, respectively, by 1H NMR. Copolyesters were characterized as random, based on 13C NMR spectra. They were fully investigated during nonisothermal crystallization and thermal degradation through various approaches in this study. A differential scanning calorimeter (DSC) and a polarized light microscope (PLM) adopted to study the nonisothermal crystallization of these polyesters at a cooling rate of 1, 2, 3, 5, 6 and 10 ºC/min. Morphologies and the isothermal growth rates of spherulites under PLM experiments were monitored and obtained by curve-fitting, respectively. These continuous rate data were analyzed with the Lauritzen-Hoffman equation. A transition of regime II → III was found at 95.6, 84.4, and 77.3 ºC for PBSu, PBPSu 95/5, and PBPSu 90/10, respectively.
    DSC exothermic curves show that all of the nonisothermal crystallization occurred in regime III. DSC data were analyzed using modified Avrami, Ozawa, Mo, Friedman and Vyazovkin equations. Ozawa equation does not accurately describe the nonisothermal crystallization kinetics of this polyester because part of the crystallization is secondary crystallization. All the results of PLM and DSC measurements indicate that incorporation of minor PS units into PBSu markedly inhibits the crystallization of the resulting polymer. The melting behavior of nonisothermally crystallized samples presents a continuous melting–recrystallization–remelting process. Additionally, three absorption bands during the nonisothermal crystallization were identified for PBSu and two PBPSu copolyesters, namely, 916, 955, 1045 cm-1 in the attenuated total reflectance FTIR spectra.
    Thermogravimetric analysis (TGA)-FTIR was heated at 5 ºC/min under N2 to monitor the degradation products of these three polyesters. FTIR spectra revealed that the major products were anhydrides, which were obtained following two cyclic intramolecular degradation mechanisms by breaking the weak O-CH2 bonds around a succinate group. Thermal stability at heating rates of 1, 3, 5, and 10 ºC/min under N2 was investigated using TGA. The model-free methods of Friedman and Ozawa equations are useful for studying the activation energy of degradation in each period of mass loss. The results reveal that the random incorporation of minor PS units into PBSu did not markedly affect their thermal resistance. Two model-fitting mechanisms were used to determine the loss mass function f(α), the activation energy and the associated mechanism. The mechanism of autocatalysis nth-order, with f(α)=αm(1-α)n, fitted the experimental data much more closely than did the nth-order mechanism given by f(α)=(1-α)n. The obtained activation energy was used to estimate the failure temperature (Tf). The values of Tf for a mass loss of 5% and an endurance time of 60,000 hr are 160.7, 155.5, and 159.3 ºC for PBSu and two the copolyesters, respectively.
    關鍵字(中)
  • 共聚酯
  • 非等溫結晶
  • 聚丁二酸二丁酯
  • 熱裂解
  • 關鍵字(英)
  • copolyesters
  • thermal degradation
  • poly(butylene succinate)
  • nonisothermal crystallization
  • 論文目次 ABSTRACT I
    摘  要 III
    致  謝 V
    CONTENTS VI
    LIST OF TABLES VIII
    LIST OF SCHEMES IX
    LIST OF FIGURES X
    CHAPTER 1 INTRODUCTION 1
    1.1 Backgrounds 1
    1.2 Motivation and objectives 4
    1.3 Research approaches 5
    CHAPTER 2 LITERATURE REVIEW AND THEORETICAL APPROACHES 7
    2.1 Crystallization structure and conformation of poly(butylene succinate) 7
    2.2 Related researches of poly(butylene succinate) 8
    2.2.1 Poly(butylene succinate) homopolymer 8
    2.2.2 Blending with poly(butylene succinate) 11
    2.2.3 Copolymerization with poly(butylene succinate) 15
    2.3 Related researches of poly(butylene succinate-co-propylene succinate) 18
    2.4 Nonisothermal crystallization 22
    2.4.1 Avrami model 25
    2.4.2 Ozawa model 26
    2.4.3 Mo model 27
    2.4.4 Kinetic analysis of growth rates of spherulites 28
    2.4.5 Effective activation energy 29
    2.4.6 ATR-FTIR spectra for crystallization measurements 30
    2.5 Thermal degradation reaction and kinetics 32
    2.6 Life-time and failure temperature parameters prediction 34
    CHAPTER 3 EXPERIMENTAL 36
    3.1 Chemicals 36
    3.2 Materials 36
    3.3 Samples preparation 36
    3.4 Instruments 37
    3.5 Characterization 37
    3.5.1 Microstructures 37
    3.5.2 Molecular weights 38
    3.5.3 Crystal morphology and measurements of the growth rates under nonisothermal condition 38
    3.5.4 Crystallization behavior under nonisothermal condition 39
    3.5.5 Melting behavior following nonisothermal condition 39
    3.5.6 Thermal degradation kinetics 40
    3.5.7 Thermal degradation mechanism 40
    3.5.8 Research flow chart 40
    CHAPTER 4 RESULTS AND DICUSSION 41
    4.1 Molecular weight measurements 41
    4.2 Analyses of microstructures 41
    4.3 Determination of the growth rates by the nonisothermal method 42
    4.4 Kinetic analysis of the growth rates of spherulites 44
    4.5 Morphology of spherulites 45
    4.6 Nonisothermal crystallization 46
    4.6.1 Crystallization behavior 46
    4.6.2 Kinetics analyses 47
    4.6.3 Effective activation energy 50
    4.6.4 Crystallization behavior by ATR-FTIR 52
    4.7 Melting behavior 53
    4.8 FTIR spectra changes during thermal degradation 54
    4.9 Thermal degradation mechanisms 56
    4.10 Thermal degradation kinetics 58
    4.11 Life-time and failure temperature 61
    CHAPTER 5 CONCLUSIONS 63
    REFERENCES 126
    PUBLICATIONS 133
    參考文獻 1 Iwata, T.; Doi, Y. Crystal structure and biodegradation of aliphatic polyester crystals. Macromol Chem Phys 1999, 200, 2429–2442.
    2 Mochizuki, M.; Katsuyuki, M.; Kenji, Y.; Naoji, I.; Shigemitsu, M.; Yoshiaki, I. Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s. Macromolecules 1997, 30, 7403-7407.
    3 Wang, H. J.; Gan, Z. H.; Shultz, J. M.; Yan, S. K. A morphological study of poly(butylene succinate)/poly(butylene adipate) blends with different blend ratios and crystallization processes. Polymer 2008, 49, 2342–2353.
    4 Gan, Z. H.; Abe, H.; Doi, Y. Biodegradable poly(ethylene succinate) (PES). 1. Crystal growth kinetics and morphology. Biomacromolecules 2000, 1, 704–712.
    5 Abe, H.; Doi, Y.; Aoki, H.; Akehata, T. Solid-state structures and enzymatic degradabilities for melt-crystallized films of copolymers of (R)-3-hydroxybutyric acid with different hydroxyalkanoic acids. Macromolecules 1998, 31, 1791–1797.
    6 Jin, H. J.; Lee, B. Y.; Kim, M. N.; Yoon, J. S. Thermal and mechanical properties of mandelic acid-copolymerized poly(butylene succinate) and poly(ethylene adipate). J Polym Sci Part B: Polym Phys 2000, 38, 1504-1511.
    7 Papageorgiou, G. Z.; Bikiaris, D. N. Synthesis, cocrystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers. Biomacromolecules 2007, 8, 2437–2449.
    8 Carothers, W. H.; Arvin, J. A. Studies on polymerization and ring formation. II. Poly-esters. J Am Chem Soc 1929, 51, 2560–2570.
    9 Ranucci, E.; Liu, Y.; Lindblad, M. S.; Albertsson, A. C. New biodegradable polymers from renewable sources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol. Macromol Rapid Commun 2000, 21, 680–684.
    10 Liu, Y.; Ranucci, E.; Lindblad, M. S.; Albertsson, A. C. New biodegradable polymers from renewable sources: Polyester-carbonates based on 1,3-propylene-co-1,4- cyclohexanedimethylene succinate. J Polym Sci Part A: Polym Chem 2001, 39, 2508–2519.
    11 Chrissafis, K.; Paraskevopoulos, K. M.; Bikiaris, D. N. Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab 2006, 91, 60–68.
    12 Hoffman, J. D.; Davis, G. T.; Lauritzen, Jr J. I. Treatise on solid state chemistry, Plenum Press: New York, 1976; vol 3, Chapter 7.
    13 Avrami, M. Kinetics of phase change. II. Transformation-time relation for random distribution of nuclei. J Chem Phys 1939, 8, 212–214.
    14 Avrami, M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys 1941, 9, 177–184.
    15 Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158.
    16 Liu, T. X.; Mo, Z. S.; Wang, S. G.; Zhang, H. F. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 1997, 37, 568–575.
    17 Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic, J Polym Sci Part C 1964, 6, 183–195.
    18 Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 1965, 38, 1881–1886.
    19 Chatani, Y.; Hasegawa, R.; Tadokoro, H. Polym Prepr Jpn 1971, 20, 420.
    20 Ihn, K. J.; Yoo, E. S.; Im, S. S. Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules 1995, 28, 2460–2464.
    21 Ichikawa, Y.; Suzuki, J.; Washiyama, J. Strain-induced crystal modification in poly(tetramethylene succinate), Polymer 1994, 35, 3338-3339.
    22 Ichikawa, Y.; Kondo, H.; Igarashi, Y.; Noguchi, K.; Okuyama, K.; Washiyama, J. Crystal structures of α and β forms of poly(tetramethylene succinate). Polymer 2000, 41, 4719–4727.
    23 Ichikawa, Y.; Suzuki, J.; Washiyama, J.; Moteki, Y.; Noguchi, K.; Okuyama, K. Crystal transition mechanisms in poly(tetramethylene succinate). Polymer J 1995, 27, 1230–1238.
    24 Yoo, E. S.; Im, S. S. Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Part B: Polym Phys 1999, 37, 1357–1366.
    25 Gan, Z. H.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001, 2, 605–613.
    26 Wang, X. H.; Zhou, J. J.; Li, L. Multiple melting behavior of poly(butylene succinate). Eur Polym J 2007, 43, 3163–3170.
    27 Yasuniwa, M.; Satou, T. Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J Polym Sci Part B: Polym Phys 2002, 40, 2411–2420.
    28 Yasuniwa, M.; Tsubakihara, S.; Satou, T.; Iura, K. Multiple melting behavior of poly(butylene succinate). II. Thermal analysis of isothermal crystallization and melting process. J Polym Sci Part B: Polym Phys 2005, 43, 2039–2047.
    29 Miyata, T.; Masuko, T. Crystallization behaviour of poly(tetramethylene succinate). Polymer 1998, 39, 1399–1404.
    30 Qiu, Z. B.; Yang, W. T. Crystallization kinetics and morphology of poly(butylene succinate)/poly(vinyl phenol) blend. Polymer 2006, 47, 6429–6437.
    31 Qiu, Z. B.; Ikehara, T.; Nishi, T. Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer 2003, 44, 2799–2806.
    32 Lee, J. C.; Tatawa, H.; Ikehara, T.; Nishi, T. Miscibility and crystallization behavior of poly(butylene succinate) and poly(vinylidene fluoride) blends. Polym J 1998, 30, 327–339.
    33 Qiu, Z. B.; Ikehara, T.; Nishi, T. Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer 2003, 44, 2503–2508.
    34 Shibata, M.; Inoue, Y.; Miyoshi, M. Mechanical properties, morphology, and crystallization behavior of blends of poly(L-lactide) with poly(butylene succinate-co-L-lactate) and poly(butylene succinate). Polymer 2006, 47, 3557–3564.
    35 Qiu, Z. B.; Komur, M.; Ikehara, T.; Nishi, T. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(butylene succinate) and Poly(ε-caprolactone). Polymer 2003, 44, 7749–7756.
    36 Cao, A.; Okamura, T.; Nakayama, K. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002, 78, 107–117.
    37 Gan, Z. H.; Abe, H.; Doi, Y. Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol % ethylene succinate) copolyester. Biomacromolecules 2001, 2, 313–321.
    38 Ren, M. Q.; Song, J. B.; Song, C. L.; Zhang, H. L.; Sun, X. H.; Chen, Q. Y.; Zhang, H. F.; Mo, Z. S. Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). J Polym Sci Part B: Polym Phys 2005, 43, 3231–3241.
    39 Liu, X. Q.; Li, C. C.; Xiao, Y. N.; Zhong, D.; Xiao, Y. N. Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolyester modified with rosin maleopimaric acid anhydride. J Polym Sci Part B: Polym Phys 2006, 44, 900–913.
    40 Xu, Y. X.; Wu, J.; Liu, D. H.; Guo, B. H.; Xie, X. M. Synthesis and characterization of biodegradable poly(butylene succinate-co-propylene succinate)s. J Appl Polym Sci 2008, 109, 1881–1889.
    41 Xu, Y. X.; Xu, J.; Guo, B. H.; Xie, X. M. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B: Polym Phys 2007, 45, 420–428.
    42 Soccio, M.; Finelli, L.; Lotti, N.; Gazzano, M.; Munari, A. Poly(propylene isophthalate), poly(propylene succinate), and their random copolymers: synthesis and thermal properties. J Polym Sci Part B: Polym Phys 2007, 45, 310–321.
    43 Chanprateep, S.; Kikuya, K.; Shimizu, H.; Seki, S.; Tagawa, S.; Shioya, S. Nonisothermal crystallization kinetics of biodegradable random poly(3-hydroxbutyrate-co-3-hydroxyvalerate) and block one. J Chem Eng Jpn 2003, 36, 639–646.
    44 Ziabicki, A. Kinetics of polymer crystallization and molecular orientation in the course of melt spining. Appl Polym Symp 1967, 6, 1–18.
    45 Nakamura, K.; Katayama, K.; Amano, T. Some aspects of non-isothermal crystallization of polymers. II. Consideration of the isokinetic condition. J Appl Polym Sci 1973, 17, 1031–1041.
    46 Tobin, M. C. Theory of phase transition with growth site impingement. I. J Polym Sci: Polym Phys Ed 1974, 12, 399–406.
    47 Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 1978, 19, 1142–1144.
    48 Privalko, V. P.; Kawai, T.; Lipatov, Y. S. Crystallization of filled nylon 6 III. Non-isothermal crystallization. Colloid Polym Sci 1979, 257, 1042–1048.
    49 Kamal, M. R.; Chu, E. Isothermal and nonisothermal crystallization of polyethylene. Polym Eng Sci 1983, 23, 27–31.
    50 Dutta, A. Method to obtain Avrami parameters directly from non-isothermal crystallization data. Polym Commun 1990, 31, 451–452.
    51 Patel, R. M.; Spruiell, J. E. Crystallization kinetics during polymer processing-analysis of available approaches for process modeling. Polym Eng Sci 1991, 31, 730–738.
    52 Caze, C.; Devaux, E.; Crespy, A.; Carrot, J. P. A new method to determine the Avrami exponent by d.s.c. studies of non-isothermal crystallization from the molten state. Polymer 1997, 38, 497–502.
    53 Liu, X. Q.; Li, C. C.; Xiao, Y. N.; Zhong, D.; Zeng, W. Non-isothermal crystallization kinetics and melting behaviors of poly(butylene succinate) and its copolyester modified with trimellitic imide units. J Appl Polym Sci 2006, 102, 2493–2499.
    54 Chen, G. X.; Yoo, J. S. Nonisothermal crystallization kinetics of poly(butylene succinate) composites with a twice functionalized organoclay. J Polym Sci Part B: Polym Phys 2005, 43, 817–826.
    55 Lu, H. Y.; Lu, S. F.; Chen, M.; Yang, C. S.; Chen, C. H.; Tsai, C. J. Characterization, crystallization kinetics and melting behavior of poly(ethylene succinate) copolyester containing 10 mol% butylene succinate. J Polym Sci Part B: Polym Phys 2008, 46, 2431–2442.
    56 Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B 2003, 107, 882–888.
    57 Vyazovkin, S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 2002, 23, 771–775.
    58 Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 2004, 25, 733–738.
    59 Toda, A.; Oda, T.; Hikosaka, M.; Saruyama, Y. A new method of analyzing transformation kinetics with temperature modulated differential scanning calorimetry: application to polymer crystal growth. Polymer 1997, 38, 231–233.
    60 PerkinElmer, Inc., Technical note: FT-IR spectroscopy attenuated total reflectance (ATR), http://www.perkinelmer.com
    61 What is ATR? http://www.nuance.northwestern.edu/keckii/ftir2.asp
    62 Hagemann, H.; Snyder, R. G.; Peacock, A. J.; Mandelkern, L. Quantitative infrared methods for the measurement of crystallinity and its temperature-dependence- polyethylene. Macromolecules 1989, 22, 3600-3606.
    63 Hama, H.; Tashiro, K. Structural changes in non-isothermal crystallization process of melt-cooled polyoxymethylene. [I] Detection of infrared bands characteristic of folded and extended chain crystal morphologies and extraction of a lamellar stacking model. Polymer 2003, 44, 3107–3116.
    64 Hama, H.; Tashiro, K. Structural changes in isothermal crystallization process of polyoxymethylene investigated by time-resolved FTIR, SAXS and WAXS measurements. Polymer 2003, 44, 6973–6988.
    65 Hu, Y.; Zhang, J. M.; Sato, H.; Noda, I.; Ozaki, Y. Multiple melting behavior of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer 2007, 48, 4777–4785.
    66 Furukawa, T.; Sato, H.; Murakami, R.; Zhang J. M.; Noda, I.; Ochiai, S.; Ozaki, Y. Comparison of miscibility and structure of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(L-lactic acid) blends with those of poly (3-hydroxybutyrate)
    /poly(L-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry, and FTIR microspectroscopy. Polymer 2007, 48, 1749–1755.
    67 Rizzarelli, P.; Puglisi, C.; Montaudo, G. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectra of poly(butylene adipate). Rapid Commun Mass Spectrom 2006, 20, 1683-1694.
    68 Dollimore, D.; Tong, P.; Alexander, K. S. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim Acta 1996, 283, 13-27.
    69 Li, F. X.; Xu, X. J.; Li, Q. B.; Li, Y.; Zhang, H. Y.; Yu, J. Y.; Cao, A. Thermal degradation and their kinetics of biodegradable poly(butylene succinate-co-butylene terephthate)s under nitrogen and air atmospheres. Polym Degrad Stab 2006, 91, 1685–1693.
    70 Chen, C. H. Synthesis and characterization of biodegradable poly(butylene succinate) copolyesters. Ph. D. thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, July 2010.
    71 ASTM E 1641–99, Standard test method for decomposition kinetics by thermogravimetry. American Society for Testing and Materials 1999, West Conshohocken, PA, USA.
    72 Chen, C. H.; Peng, J. S.; Chen, M.; Lu, H. Y.; Tsai, C. J.; Yang, C. S. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci 2010, 288, 731–738.
    73 Chung, C. T.; Chen, M. Polym Prepr 1992, 33, 420–421.
    74 Chen, M.; Chung, C. T. Analysis of crystallization kinetics of poly(ether ether ketone) by a nonisothermal method. J Polym Sci Part B: Polym Phys 1998, 36, 2393–2399.
    75 Di Lorenzo, M. L.; Cimmino, S.; Silvestre, C. Nonisothermal crystallization of isotactic polypropylene blended with poly(alpha-pinene). 2. Growth rates. Macromolecules 2000, 33, 3828– 3832.
    76 Peng, J. S. Copolymers and blends of poly(butylene succinate) and poly(trimethylene succinate): characterization, crystallization, melting, and morphology. Master thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, July 2007.
    77 Keller, A. The spherulitic structure of crystalline polymers. 2. The problem of molecular orientation in polymer spherulites. J Polym Sci 1955, 17, 351–364.
    78 Sperling, L. H. Introduction to physical polymer science, 3rd ed.; Wiley-Interscience: New York, 2001; Chapter 6.
    79 Papageorgiou, G. Z.; Bikiaris, D. N. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 2005, 46, 12081–12092.
    80 Qiu, Z. B.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T. Nonisothermal crystallization kinetics of poly(butylene succinate) and poly(ethylene succinate). Polym J 2004, 36, 642–646.
    81 Leonardo, C. L.; Garth, L. W. Non-isothermal crystallization kinetics of poly(p- phenylene sulphide). Polymer 1989, 30, 882–887.
    82 Won, J. C.; Fulchiron, R.; Douillard, A.; Chabert, B.; Varlfct, J.; Chomier, D. The crystallization kinetics of polyamide 66 in non-isothermal and isothermal conditions: effect of nucleating agent and pressure. Polym Eng Sci 2000, 40, 2058–2071.
    83 Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal Chem 1957, 29, 1702–1706.
    84 Papageorgiou, G. Z.; Achilias, D. S.; Bikiaris, D.N. Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and non-isothermal conditions. Macromol Chem Phys 2007, 208, 1250–1264.
    85 Partini, M.; Pantani, R. Determination of crystallinity of an aliphatic polyester by FTIR spectroscopy. Polym Bull 2007, 59, 403–412.
    86 Pan, C. K.; Liu, F.; Sutton, P.; Vivilecchia, R. The use of thermal desorption GC/MS to study weight loss in thermogravimetric analysis of di-acid salts. Thermochim Acta 2005, 435, 11-17.
    87 Khemani, K. C. A novel approach for studying the thermal degradation, and for estimating the rate of acetaldehyde generation by the chain scission mechanism in ethylene glycol based polyesters and copolyesters. Polym Degrad Stab 2000, 67, 91-99.
    88 Bikiaris, D. N.; Chrissafis K.; Paraskevopoulos, K. Investigation of thermal degradation mechanism of an aliphatic polyester using pyrolysis-gas chromatography-mass spectrometry and a kinetic study of the effect of the amount of polymerisation catalyst. Polym Degrad Stab 2007, 92, 525–536.
    89 Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym Degrad Stab 2008, 93, 561-584. 90 Shih, Y. F.; Chieh, Y. C. Thermal degradation behavior and kinetic analysis of biodegradable polymers using various comparative models, 1 poly(butylene succinate). Macromol Theory
    Simul 2007, 16, 101–110.
    91 Chrissafis, K.; Paraskevopoulos, K. M.; Bikiaris, D. N. Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochim Acta 2005, 435, 142–150.
    92 Lin, S. W.; Cheng, Y. Y. Miscibility, mechanical and thermal properties of melt-mixed poly(trimethylene terephthalate)/polypropylene blends. Polym-Plast Technol Eng 2009, 48, 827-833.
    93 Lotti, N.; Finelli, L.; Siracusa, V.; Munari, A.; Gazzana M. Synthesis and thermal characterization of poly(butylene terephthalate-co-thiodiethylene terephthalate) copolyesters. Polymer 2002, 43, 4355-4363.
    94 Jimenez, A.; Torre, L.; Kenny, J. M. Thermal degradation of poly(vinyl chloride) plastisols based on low-migration polymeric plasticizers. Polym Degrad Stab 2001, 73, 447-453.
    95 ASTM E 1877–00, Standard practice for calculating thermal endurance of materials from thermogravimetric decomposition data. American Society for Testing and Materials 2000, West Conshohocken, PA, USA.
    口試委員
  • 蘇安仲 - 召集委員
  • 吳宗明 - 委員
  • 吳昌謀 - 委員
  • 王紀 - 委員
  • 邱方遒 - 委員
  • 陳明 - 指導教授
  • 口試日期 2010-07-19 繳交日期 2010-08-15

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫