Responsive image
博碩士論文 etd-0816107-183237 詳細資訊
Title page for etd-0816107-183237
論文名稱
Title
線性化射頻功率放大器之數位基頻預失真技術之研究
A Study of Digital Baseband Predistortion Technique for Linearizing RF Power Amplifiers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-16
繳交日期
Date of Submission
2007-08-16
關鍵字
Keywords
數位預失真、查表法、功率放大器
Power Amplifier, LUT, Digital Predistortion
統計
Statistics
本論文已被瀏覽 5868 次,被下載 7174
The thesis/dissertation has been browsed 5868 times, has been downloaded 7174 times.
中文摘要
本論文主要為實現一基頻數位預失真之發射機系統架構,目的為改善功率放大器線性度。本架構採用極座標架構之查表法預失真器,以FPGA實現基頻數位電路,使其對一0.5μm GaAs pHEMT製程設計應用於WiMAX頻段的AB類功率放大器之AM/AM和AM/PM非線性特性分別做預失真,並且能產生單音、雙音和多音連續波之基頻訊號進行測試,結果證明數位預失真技術有效改善交互調變失真,使功率放大器可操作在更高功率範圍,進而提升轉換效率。
Abstract
This thesis presents a transmitter with digital baseband predistorter to improve linearity of power amplifier. The architecture adopts the look-up table predistorter base on a polar scheme, and realizes the digital processor using FPGA. The predistortion for AM/AM and AM/PM nonlinear relations in a 0.5μm GaAs pHEMT class-AB power amplifier has been performed. One-tone, two-tone and multi-tone continuous waves generated by baseband signal are used for linearity test. The results demonstrate that the digital predistortion technique can effectively improve intermodulation distortion. With this technique, the power amplifier can operate in the higher power range to achieve a similar linearity and a higher efficiency.
目次 Table of Contents
第一章 序論 1
1.1 背景簡介 1
1.2 章節規劃 3
第二章 線性功率放大器之線性化技術 4
2.1 線性功率放大器之非線性效應 4
2.1.1 增益壓縮 4
2.1.2 交互調變失真 6
2.1.3 三階交越點 7
2.1.4 多音交互調變比例 8
2.1.5 鄰近通道功率比例 9
2.1.6 雙頻與複頻交互調變失真之關係 10
2.1.7 放大器的非線性AM/AM和AM/PM轉換特性 11
2.2 功率放大器線性化技術 12
2.2.1 回授式線性化技術 13
2.2.2 前饋式線性化技術 14
2.2.3 預失真線性化技術 15
2.3 基頻數位預失真線性化技術 18
2.3.1 多項式基頻數位預失真器 19
2.3.2 查表式基頻數位預失真器 20
2.3.3 查找表建表法 21
2.3.4 查找表索引函數 23
2.3.5 預失真後之等效增益考量 27
第三章 數位預失真電路設計 29
3.1 數位預失真電路架構與規劃 29
3.2 系統模擬環境 29
3.2.1 線性功率放大器行為模型 30
3.3 基頻數位處理器之設計與實現 32
3.3.1 基頻數位預失真電路設計 33
3.3.2 多音連續波測試訊號之產生 35
3.3.3 數位類比轉換器模組 36
3.3.4 基頻數位處理器功能驗證 37
第四章 採用基頻數位預失真技術之功率放大器線性化模擬與量測結果 43
4.1 2.6GHz 1-Watt Class-AB射頻功率放大器之量測結果 43
4.1.1 AM/AM非線性特性之量測結果 44
4.1.2 AM/PM非線性特性之量測結果 45
4.2 基頻數位預失真射頻發射機系統模擬與量測結果 46
4.2.1 單音訊號測試模擬與量測結果 47
4.2.2 雙音訊號測試模擬與量測結果 47
4.2.3 多音訊號測試模擬與量測結果 52
第五章 結論 58
參考文獻 59
參考文獻 References
[1]P. B. Kenington, High-Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[2]S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999.
[3]B. Shi and L. Sundstrom, “Linearization of RF power amplifiers using power feedback,” in IEEE 49th Vehicular Technology Conf., 1999, pp. 1520-1524.
[4]M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques,” IEEE Trans. Veh. Technol., vol. 47, pp. 209-215, Feb. 1998.
[5]S. P. Stapleton, “Amplifier linearization using adaptive digital predistortion,” Applied Microwave Wireless, vol. 13, pp. 72-77, Feb. 2001.
[6]S. Boumaiza and F. M. Ghannouchi, “Realistic power-amplifiers characterization with applcation to baseband digital predistortion for 3G base stations,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 3016-3021, Dec. 2002.
[7]S. Kusunoki, K. Yanamoto, and T. Iida, “Power-amplifier module with digital adaptive predistortion for cellular phones,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2979-2986, Dec. 2002.
[8]Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “An adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, pp. 22-44, April 2003.
[9]J. K. Cavers, “Adaptive behavior of a feedforward amplifier linearizer,” IEEE Trans. Veh. Technol., vol. 44, pp. 31-40, Feb. 1996.
[10]M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques,” IEEE Trans. Veh. Technol., vol. 47, pp. 209-215, Feb. 1998.
[11]P. B. Kenington and D. W. Bennett, “Linear distortion correction using a feedforward system,” IEEE Trans. Veh. Technol., vol. 45, pp. 74-81, Feb. 1996.
[12]A. H. Coskun and S. Demir, “A mathematical characterization and analysis of a feedforward circuit for CDMA applications,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 767-777, March 2003.
[13]G. Hau, T. Nishimura, and N. Iwata, “A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1194-1201, June 2001.
[14]D. M. Pozar, Microwave and RF Wireless Systems, Norwood, MA: John Wiley & Sons, Inc., 2001.
[15]K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-Up table techniques for adaptive digital predistortion: a development and comparison,”IEEE Trans. Vehicular Tech., vol. 49, pp.1995-2002, Sep. 2000.
[16]F. H. Raab, et al., “RF and microwave power amplifier and transmitter technologies –part 4,” High Frequency Electronics, Nov. 2003.
[17]S. P. Stapleton, G. S. Kandola, and J. K. Cavers, “Simulation and analysis of an adaptive predistorter utilizing a complex spectral convolution,” IEEE Trans. Veh. Technol., vol. 41, pt. 11, pp. 387-394, Nov. 1992.
[18]H. Besbes, T. Le-Ngoc, and H. Lin, “A fast adaptive polynomial predistorter for power amplifiers,” in Proc. IEEE Global Telecomm. Conf., July 2001, pp. 659-663.
[19]K. C. Lee and P. Gardner, “A novel digital predistorter technique using an adaptive neuro-fuzzy inference system,” IEEE Commun. Lett., vol. 7, pp. 55-57, Feb. 2003.
[20]H. H. Chen, C. H. Lin, P. C. Huang, and J. T. Chen, “Joint Polynomial and Look-Up-Table Predistortion Power Amplifier Linearization,” IEEE Trans. on Circuit and Systems, Vol. 53, Aug. 2006.
[21]J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements,” IEEE Trans. Veh. Technol., vol. 39, pp. 374-382, Nov. 1990.
[22]J. K. Cavers, “Optimum table spacing in predistorting amplifier linearizers,” IEEE Tran .Vehicular Tech., vol. 48, pp. 1699-1705, Sep. 1999.
[23]K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-Up table techniques for adaptive digital predistortion: a development and comparison,”IEEE Trans. Vehicular Tech., vol. 49, pp.1995-2002, Sep. 2000.
[24]J. Y. Hassani and M. Kamareei, “Quantization error improvement in a digital predistorter for RF power amplifier linearization,” in Proc. IEEE Veh. Technol. Conf., 2001, pp. 1201–1204.
[25]Y. Nagata, “Linear amplification technique for digital mobile communications,” in Proc. IEEE Vehicular Tech. Conf., 1989, pp. 159-164.
[26]S. P. Stapleton, Digital Predistortion of Power Amplifiers, Agilent Technologies Inc. [online]. Available: http://www.agilent.com
[27]A. S. Wright and W. G. Durtler, “Experimental performance of an adaptive digital linearized power amplifier,” IEEE Trans. Vehicular Tech., vol. 41, pp. 395-400, Nov. 1992.
[28]M. Faulkner and M. Johansson, “Adaptive linearization using predistortion – experimental results,” IEEE Trans. Vehicular Tech., vol. 43, pp. 323-332, May 1994.
[29]L. Sundstrom, M. Haulkner, and M. Johanson, “Quantization analysis and design of a Digital predistortion linearizer for RF power amplifier,” IEEE Trans. Vehicular Tech., vol. 45, pp. 707-719, Nov. 1996.
[30]S. Boumaiza, J. Li, M. J-.Saidane and F. M. Ghannouchi, “Adaptive digital/RF predistortion using a nonuniform LUT indexing function with built-in dependence on the amplifier nonlinearity,” IEEE Trans. Microwave Theory and Tech., vol. 52, pp. 2670-2677, Dec. 2004.
[31]W. J. Jung, W. R. Kim, K. M. King, and K. B. Lee, “Digital predistorter using multiple lookup tables,” Electron. Lett., vol. 39, Sep. 2003.
[32]C. H. Lin, et al., “Dynamically optimum lookup-table spacing for power amplifier predistortion linearization,” IEEE Trans. Microwave Theory and Tech., vol. 54, pp. 2118-2127, May 2006.
[33]Advanced Design System Documentation, Agilent Technologies Inc., [online]. Available: http://www.agilent.com
[34]J. G. Proakis, Digital Communications, 4th ed., NY: McGraw-Hill, 2001.
[35]B. K. Horng, Lung-Yuan Incubation Center, Taoyuan, Taiwan, Chug-Shan Institute of Science & Technology, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code