論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-09-19
校外 Off-campus:開放下載的時間 available 2025-09-19
論文名稱 Title |
高頻頻率調變連續波雷達子系統重現及改良 Reproduction and Improvement of High Frequency FMCW Radar Subsystem |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
68 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-09-16 |
繳交日期 Date of Submission |
2022-09-19 |
關鍵字 Keywords |
螺旋天線、頻率調變連續波雷達、直接數字合成器、頻率響應、高頻雷達 helical antenna, FMCW radar, direct digital synthesizer, frequency response, high-frequency radar |
||
統計 Statistics |
本論文已被瀏覽 244 次,被下載 0 次 The thesis/dissertation has been browsed 244 times, has been downloaded 0 times. |
中文摘要 |
本論文以改善 OCEAN PHYSICS 高頻測流雷達為目標,並分成天線、接收板 與 DDS 模組,三個子系統進行重現與改良。 首先利用麵包板搭配並聯可變電容作為 OCEAN PHYSICS 螺旋天線 SWR 值 改良式的調整方式,並考量 OCEAN PHYSICS 螺旋天線長期放置在戶外空曠地方 可能遭受雷擊等風險外,亦透過實驗證明該方式能夠對螺旋天線 SWR 值有著比 OCEAN PHYSICS 原先方法更大的調整範圍的效果,並經由實際收發訊號實驗來 驗證改良式天線 SWR 調整方式與 OCEAN PHYSICS 原先調整方式有著差不多的 成效外,更大幅提升天線調整的便利性。 藉由重現 OCEAN PHYSICS 接收板,量測其頻率響應,確定高頻測流雷達系 統量測距離效果不佳的原因,為板上所使用之 OP 放大器所導致,該放大器在頻 寬太窄,影響接收板的靈敏度,本論文透過更換 OP 放大器型號做為改良式接收 板來解決此問題,由於雷達靈敏度與雜訊指數有著直接的關聯性,因此本論文亦 量測 OCEAN PHYSICS 接收板及改良式接收板之雜訊指數,完成接收板靈敏度的 改良。 透過 Keysight 89600 VSA 軟體量測 OCEAN PHYSICS 之直接數字合成器 (Direct digital synthesizer, DDS)模組、TORI_NSYSU_ver1 的之 DDS 模組,及本論 文所提出之 TORI_NSYSU_ver2 之 DDS 模組所產生之線性調變(Chirp)訊號的相位 誤差、FM 誤差,及 FM 斜率誤差的峰值及方均根值作為判斷訊號準確性的標準。 |
Abstract |
This paper aims to improve the OCEAN PHYSICS high-frequency current measuring radar, and divides it into antenna, receiving board and DDS module, and reproduces and improves three subsystems. First we uses a solderless breadboard with a parallel variable capacitor as an improved adjustment method for the SWR value of the OCEAN PHYSICS helical antenna, and considers that the OCEAN PHYSICS helical antenna may suffer from lightning strikes when placed in an open outdoor place for a long time. It is also proved through experiments that this method can have a larger adjustment range for the SWR value of the helical antenna than the original method of OCEAN PHYSICS, and through the actual transmission and reception signal experiments to verify that the improved antenna SWR adjustment method has similar results with the original adjustment method of OCEAN PHYSICS. In addition, the convenience of antenna adjustment is greatly improved. By reproducing the OCEAN PHYSICS receiver board and measuring its frequency response, it is determined that the reason for the poor measurement effect of the highfrequency current measuring radar system is the OP amplifier used on the board. The amplifier has an linearly decreasing open-loop gain within the operating frequency. It will affecting the sensitivity of the receiver board. This paper solves this problem by replacing an OP amplifier with a fixed open-loop gain within the operating frequency as an improved receiver board. Since the radar sensitivity is directly related to the noise figure, this paper also measure the noise figure of the OCEAN PHYSICS receiver board and the improved receiver board, and finish the improvement of receiver board. Using Keysight 89600 VSA software to measure the Chirp signal produced by the direct digital synthesizer (DDS) module of OCEAN PHYSICS, reproduce the DDS module of OCEAN PHYSICS, and the improved DDS module proposed in this paper The phase error, FM error, and peak value and RMS value of FM slope error of the signal are used as the standard to judge the accuracy of the signal. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iv Abstract v 目錄 vi 圖次 viii 表次 xi 第一章 序論 1 1.1研究背景與動機 1 1.2頻率調變連續波雷達系統簡介 2 1.3章節規劃 4 第二章 螺旋天線駐波比之簡易調整方法 5 2.1螺旋天線原理 5 2.2實驗儀器介紹 7 2.3 OCEAN PHYSICS調整螺旋天線方式 8 2.4改良式調整螺旋天線方式 10 2.5 OCEAN PHYSICS與改良式調整方式實際收發比較 12 2.5.1 OCEAN PHYSICS實際收發實驗 13 2.5.2改良式調整螺旋天線方式實際收發實驗 15 2.5.3兩種調整螺旋天線方式實際收發數據比較 18 第三章 接收板 19 3.1頻率調變連續波雷達公式推導 19 3.2接收板使用元件及架構 21 3.3接收板頻率響應 25 3.3.1弗里斯傳輸方程式推導 25 3.3.2接收板頻率響應量測方式 25 3.3.3 LO固定RF改變頻率之頻率響應 27 3.3.2 RF與LO固定頻率差之頻率響應 30 3.3.3 改良式接收板之頻率響應 31 3.4.1 增益法量測雜訊指數 37 3.4.2接收板之雜訊指數量測 38 第四章 直接數字合成器 40 4.1直接數字合成器介紹 42 4.2量測儀器與元件介紹 44 4.3實驗與量測比較 46 4.3.1 OCEAN PHYSICS之DDS模組量測實驗 46 4.3.2 TORI_NSYSU_ver1之DDS模組量測實驗 47 4.3.3 TORI_NSYSU_ver2之DDS模組量測實驗 49 4.3.4 量測係數說明及結果比較 50 第五章 結論與未來展望 53 參考文獻 54 |
參考文獻 References |
[1] 林家豐,高家俊,董東璟,張育瑋(2005) "應用 X-band 雷達於分析海面流況之研究",第二十七屆海洋工程研討會論文集。 [2] A. Dzvonkovskaya, and K. W. Gurgel, “HF radar WERA application for ship detection and tracking,” Eur. J. Navig., vol. 7, no. 3, pp. 18-25, 2009. [3] 楊文昌,梁恩昱,王雅真,陳少華,胡建驊,李俊賢(2010) "利用高頻雷達監測台灣四周海域表層海流",第三十二屆海洋工程研討會論文集。 [4] G. Charvat, Small and Short Range Radar Systems, Taylor & Francis Group, 2014. [5] J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A fully integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, 2010. [6] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001. [7] S. Jeng, W. Chieng and H. Lu, “Estimating Speed Using a Side-Looking Single-Radar Vehicle Detector,” in IEEE trans. Intell. Transp. Syst., vol. 15, no. 2, pp. 607-614, Apr. 2014. [8] D. Weyer, M. B. Dayanik, L. Jie, A. Albalawi, A. Alothaimen, M. Aseeri, and M. P. Flynn, “Design considerations for integrated radar chirp synthesizers,” IEEE Access, vol. 7, pp. 13723–13736, 2019. [9] J. D. Kraus, “The Helical Antenna,” in Proc. IRE, vol. 37, no. 3, pp. 263-272, Mar. 1949. [10] J. D. Kraus, “Helical Beam Antennas for Wide-Band Applications,” Proc. IRE, vol. 36, no. 10, pp. 1236-1242, Oct. 1948. [11] ifuun [Online] Available: http://www.ifuun.com/a2018111317037929/ [12] Gigaparts [Online] Available: https://www.gigaparts.com/mfj-269c.html [13] Signalhound [Online] Available: https://signalhound.com/products/usb-sa44b/ [14] P. Brennan, Y. Huang, M. Ash and K. Chetty, “Determination of Sweep Linearity Requirements in FMCW Radar Systems Based on Simple Voltage-Controlled Oscillator Sources,” IEEE Trans. Aerosp Electron Syst., vol. 47, no. 3, pp. 1594-1604, July 2011. [15] S. Baek, Y. Jung, and S. Lee, “Signal Expansion Method in Indoor FMCW Radar Systems for Improving Range Resolution,” Sensors21, no. 12, 2021. [16] A. G. Stove, “Linear FMCW radar techniques,” Proc. Inst. Electr. Eng. F—Radar Signal Process., vol. 139, no. 5, pp. 343–350, Oct. 1992. [17] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928-937, Apr. 2010. [18] J. Lee, Y. Li, M. Hung and S. Huang, “A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology,” in IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746-2756, Dec. 2010. [19] F. Wang, P. Juan, D. Chian and C. Wen, “Multiple Range and Vital Sign Detection Based on Single-Conversion Self-Injection-Locked Hybrid Mode Radar With a Novel Frequency Estimation Algorithm,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1908-1920, May 2020. [20] David M. Pozar;Microwave Engineering,4/E. :Wiley ,pp.641 [21] Mouser [Online] Available: https://www.mouser.tw/ProductDetail/Texas-Instruments/OPA2227MDREP [22] Mouser [Online] Available: https://www.mouser.tw/ProductDetail/Texas-Instruments/THS4022CD [23] Maximintegrated [Online] Available: https://www.maximintegrated.com/en/design [24] 王鏡晰(2021) "高頻頻率調變連續波雷達系統設計及驗證",國立中山大學電機工程學系研究所碩士論文。 [25] J. Tierney, C. M. Rader and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust., vol. AU-19, no. 1, pp. 48-56, Mar. 1971. [26] Y. X. Yang, X. Shi, F. Su, Z. B. Wang, P. Yang and H. Z. Yang, “A 2.2-GHz Configurable Direct Digital Frequency Synthesizer Based on LUT and Rotation,” IEEE Trans. Circuits Syst. I. Regular Papers, vol. 66, pp. 1970-1980, May. 2019 [27] J. Vankka et al., “A direct digital synthesizer with an on-chip D/A-converter,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 218-227, Feb. 1998. [28] X. Yu, F. F. Dai, J. D. Irwin, and R. C. Jaeger, “A 9-Bit quadrature direct digital synthesizer implemented in 0.18 um SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1257-1266, May 2008. [29] Keysight [Online] Available: https://www.keysight.com/tw/zh/product/N9030B/ [30] Analog Device [Online] Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9512.pdf [31] Analog Device [Online] Available: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc832a.pdf |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-09-19 校外 Off-campus:開放下載的時間 available 2025-09-19 您的 IP(校外) 位址是 18.226.104.30 現在時間是 2024-11-22 論文校外開放下載的時間是 2025-09-19 Your IP address is 18.226.104.30 The current date is 2024-11-22 This thesis will be available to you on 2025-09-19. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-09-19 |
QR Code |