論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
海洋化合物靈菌紅素及穀胱甘肽S-轉移酶M家族對於神經膠母細胞瘤之抗癌探討 The anti-cancer role of the marine compound prodigiosin and GSTM subfamily on glioblastoma |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
156 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2019-09-16 |
繳交日期 Date of Submission |
2019-09-22 |
關鍵字 Keywords |
多型性神經膠母細胞瘤、靈菌紅素、帝盟多、自噬性死亡、化療藥物耐受性、穀胱甘肽S-轉移酶M家族 glioblastoma multiforme, prodigiosin, temozolomide, autophagic cell death, chemotherapeutic resistance, glutathione S-transferases M subfamily |
||
統計 Statistics |
本論文已被瀏覽 5735 次,被下載 0 次 The thesis/dissertation has been browsed 5735 times, has been downloaded 0 times. |
中文摘要 |
多型性神經膠母細胞瘤(glioblastoma multiforme, GBM)為常見於腦部的惡性癌化腫瘤。經統計顯示,以目前傳統侵入式外科手術切除及放射線治療並搭配化療藥物共同治療,其治療預後五年存活率低於百分之三十,其中藥物耐受性在患者存活率上扮演重要原因。在本研究第一部份之結果發現,從海洋弧菌萃取出的靈菌紅素(prodigiosin)以微莫耳濃度即能毒殺多型性神經膠母細胞瘤細胞株,並且比化療藥物帝盟多(temozolomide)低兩百倍以下,就可抑制癌細胞次球體之產生(cancer cell sphere formation)。靈菌紅素會增加內質網壓力及強烈的自噬作用並引起細胞凋亡相關分子表現,進而導致自噬性死亡(autophagic cell death)。靈菌紅素也會降低於神經膠母細胞瘤細胞中異常上升的AKT分子路徑。此外,也造成代謝酶穀胱甘肽S-轉移酶M3的RNA表現量下降。在本論文第二部份,連續60天帝盟多篩選後的GBM8401神經膠母細胞瘤細胞群中,原生性表現之穀胱甘肽S-轉移酶家族蛋白之蛋白表現有增量的現象。另外,在具有高度抗帝盟多毒殺並高度表現穀胱甘肽S-轉移酶M3之T98G神經膠母細胞瘤細胞,減弱其穀胱甘肽S-轉移酶M3表現,能增強帝盟多毒殺現象,並且降低細胞侵入之能力,並在海馬生物能量測定儀(Seahorse XF Analyzer)的分析結果發現,缺少穀胱甘肽S-轉移酶M3會降低糖解作用。綜合以上結果,穀胱甘肽S-轉移酶M家族蛋白可能在神經膠母細胞瘤中影響化療藥物帝盟多抗性。期望本研究結果能提供具抗化療藥物耐受性之多型性神經膠母細胞瘤之可能治療方向。 |
Abstract |
Glioblastoma multiforme (GBM) is a frequently malignant primary brain tumor. Even with aggressive treatment strategies, including surgery, radiotherapy, and chemotherapies, the median survival is less than 30% in 5 years. In chemotherapeutic failure, drug resistance is a critical factor affecting the survival rate of patients with cancer. In part I of this thesis, we observed that marine Vibrio bacteria-derived prodigiosin significantly downregulated the growth in micromolar concentrations and inhibited cancer cell sphere formation at concentrations 200 times less than that of chemotherapy-drug temozolomide (TMZ) in GBM cell lines. Moreover, prodigiosin causes endoplasmic reticulum stress with extreme autophagy and induces apoptosis marker expression, which causes autophagic cell death. Prodigiosin attenuates most GBM abnormal increased AKT signaling. Furthermore, prodigiosin decreased glutathione S-transferases mu 3 (GSTM3) mRNA expression. In part II of this thesis, our results showed that subjecting TMZ-resistant GBM8401 glioblastoma cells to continuous TMZ treatment for 60 days resulted in enhanced endogenous GST protein expression. Moreover, the T98G glioblastoma cell line, a pre-existing and highly TMZ-resistant strain with high GSTM3 expression, exhibited increased TMZ toxicity and decreased invasion ability after transfection of GSTM3 gene silencing by siRNA. We also observed downregulated glycolysis ability in GSTM3-downregulated T98G cells using a Seahorse XF Analyzer. These results clarify that the GSTM subfamily might affect chemotherapy drug TMZ resistance in GBM. We expect our results to provide probable solutions for GBM's chemotherapeutic resistance. |
目次 Table of Contents |
論文審定書 i 論文公開授權書 ii 誌謝 iii 中文摘要 iv Abstract v Table of contents vi List of figures xi List of tables xv List of abbreviation xvi General introduction 1 Brain cancer 1 The current therapy of GBM patients 1 The genomic alterations of clinical GBM subtypes 3 Possible treatment strategies for chemotherapeutic resistance in GBM 4 Marine natural products in drug development 5 Concept of this thesis 6 General materials and methods 10 Reagents 10 Cell culture 10 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay for cell viability analysis 11 RNA isolation and cDNA synthesis 11 Western blotting 11 Acridine Orange staining 12 Statistical analyses 12 Part I. Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells 13 Introduction 14 Background of marine vibrio derived-prodigiosin 14 Endoplasmic reticulum stress and autophagy 14 Autophagy-related programmed cell death: autophagic cell death 15 Cell proliferation and survival-related PI3K/AKT/mTOR pathway in glioblastoma cells 16 The rationale of this research 17 Materials and methods 19 Reagents 19 Antibodies 19 Compound 19 Neurosphere formation 20 Flow cytometry analysis of cell cycle 20 Apoptosis detection using caspase-3 activity assay 21 Semi-quantitative real-time PCR 21 Light chain 3 puncta observation using fluorescence microscopy 22 Observation of prodigiosin localization to the ER using confocal microscopy 23 Results 24 Prodigiosin is a fluorescent chemical compound 24 Prodigiosin induces cell death and morphological changes in human glioblastoma cells 24 Prodigiosin reduces the growth of spheres formed from glioblastoma cells 25 Prodigiosin induces apoptosis in glioblastoma cells 25 Prodigiosin is strongly correlated with calnexin, an ER marker, and induces ER stress and autophagy in glioblastoma cells 26 Prodigiosin suppresses AKT/mTOR signaling and affects autophagic cell death-related protein in glioblastoma cell lines 27 Effect of autophagy inhibitors on prodigiosin-induced autophagic cell death 28 Prodigiosin inhibits GSTM3 mRNA expression in glioblastoma cell lines 28 Conclusion 29 Discussion 30 Figures 36 Part II. The role of GSTM subfamily in chemotherapeutic drug Temozolomide resistance glioblastoma 58 Introduction 59 Chemotherapeutic resistance in GBM treatment 59 Classification and function of metabolic isozyme glutathione s-transferase 60 GST superfamily members in cancer research 62 The role of glutathione s-transferase M3 in brain diseases and its possible functions 63 The role of glycolysis in chemotherapy resistance in cancer therapy 65 GST superfamily members affect invasion in cancer cells 66 Concept of this thesis 67 Methods 68 Antibodies 68 Generation of artificial TMZ resistance glioblastoma cell lines 68 Generation of gene knockdown glioblastoma T98G cells 68 GST activity assay 69 RNA profile transcriptome by Next-generation sequencing 69 Relative quantification of target gene expression by RT-PCR 69 Co-immunoprecipitation assay 70 Transwell chamber invasion assay 70 Results 71 Generation of TMZ-resistant glioblastoma cell lines 71 TMZ resistance level and prognostic markers expression in glioblastoma cell lines 72 Glycolysis stress response of glioblastoma cell lines 72 Examination of GST activity and GST subfamily proteins expression in glioblastoma cell lines 73 GSTM3 may affect TMZ toxicity in T98G glioblastoma cells 74 GSTM3 might be associated with glycolysis in T98G glioblastoma cells 74 GSTM3 affects invasion in T98G glioblastoma cells 75 The most affected genes in GSTM3 knockdown T98G by NGS 76 Conclusion 76 Discussion 78 Figures 83 References 104 Resume 137 |
參考文獻 References |
[1] Ostrom Q.T., Gittleman H., Farah P., Ondracek A., Chen Y., Wolinsky Y., Stroup N.E., Kruchko C., Barnholtz-Sloan J.S., CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010, Neuro-Oncology, 2013; 15 Suppl 2:ii1-56. [2] National Institutes of Health, Drugs Approved for Brain Tumors. 2019. Retrieved from https://www.cancer.gov/about-cancer/treatment/drugs/brain. [3] Health Promotion Administrationministry, 2016 Cancer registry annual report, 2018, Health and Welfare of Taiwan. [4] Louis D.N., Perry A., Reifenberger G., Von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W., The 2016 World Health Organization classification of tumors of the central nervous system: a summary, Acta neuropathologica, 2016; 131 (6):803-820. [5] Ramirez Y.P., Weatherbee J.L., Wheelhouse R.T., Ross A.H., Glioblastoma multiforme therapy and mechanisms of resistance, Pharmaceuticals (Basel), 2013; 6 (12):1475-1506. [6] Hou L.C., Veeravagu A., Hsu A.R., Tse V.C., Recurrent glioblastoma multiforme: a review of natural history and management options, Neurosurgical Focus, 2006; 20 (4):E5. [7] Khosla D., Concurrent therapy to enhance radiotherapeutic outcomes in glioblastoma, Annals of translational medicine, 2016; 4 (3):54. [8] Appin C.L., Brat D.J., Molecular genetics of gliomas, The Cancer Journal, 2014; 20 (1):66-72. [9] Silber J.R., Bobola M.S., Blank A., Chamberlain M.C., O 6-Methylguanine-DNA methyltransferase in glioma therapy: promise and problems, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2012; 1826 (1):71-82. [10] Weller M., Novel diagnostic and therapeutic approaches to malignant glioma, Swiss Medical Weekly, 2011; 141:w13210. [11] Agarwala S.S., Kirkwood J.M., Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma, The oncologist, 2000; 5 (2):144-151. [12] Cai S., Xu Y., Cooper R.J., Ferkowicz M.J., Hartwell J.R., Pollok K.E., Kelley M.R., Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents, Cancer research, 2005; 65 (8):3319-3327. [13] Goellner E.M., Grimme B., Brown A.R., Lin Y.-C., Wang X.-H., Sugrue K.F., Mitchell L., Trivedi R.N., Tang J.-b., Sobol R.W., Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair, Cancer research, 2011; 71 (6):2308-2317. [14] Lau D., Magill S.T., Aghi M.K., Molecularly targeted therapies for recurrent glioblastoma: current and future targets, Neurosurgical focus, 2014; 37 (6):E15. [15] Reardon D.A., Wen P.Y., Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents, Oncologist, 2006; 11 (2):152-164. [16] Gilbert M.R., Dignam J.J., Armstrong T.S., Wefel J.S., Blumenthal D.T., Vogelbaum M.A., Colman H., Chakravarti A., Pugh S., Won M., A randomized trial of bevacizumab for newly diagnosed glioblastoma, New England Journal of Medicine, 2014; 370 (8):699-708. [17] Jakobsen J., Urup T., Grunnet K., Toft A., Johansen M., Poulsen S., Christensen I., Muhic A., Poulsen H., Toxicity and efficacy of lomustine and bevacizumab in recurrent glioblastoma patients, Journal of neuro-oncology, 2018; 137 (2):439-446. [18] Ohgaki H., Kleihues P., Epidemiology and etiology of gliomas, Acta neuropathologica, 2005; 109 (1):93-108. [19] Ohgaki H., Kleihues P., The definition of primary and secondary glioblastoma, Clinical cancer research, 2013; 19 (4):764-772. [20] Louis D.N., Von Deimling A., Chung R.Y., Rubio M.-P., Whaley J.M., Eibl R.H., Ohgaki H., Wiestler O.D., Thor A.D., Seizinger B.R., Comparative study of p53 gene and protein alterations in human astrocytic tumors, Journal of Neuropathology & Experimental Neurology, 1993; 52 (1):31-38. [21] Balss J., Meyer J., Mueller W., Korshunov A., Hartmann C., von Deimling A., Analysis of the IDH1 codon 132 mutation in brain tumors, Acta neuropathologica, 2008; 116 (6):597-602. [22] Bleeker F.E., Lamba S., Leenstra S., Troost D., Hulsebos T., Vandertop W.P., Frattini M., Molinari F., Knowles M., Cerrato A., IDH1 mutations at residue p. R132 (IDH1R132) occur frequently in high‐grade gliomas but not in other solid tumors, Human mutation, 2009; 30 (1):7-11. [23] Parsons D.W., Jones S., Zhang X., Lin J.C., Leary R.J., Angenendt P., Mankoo P., Carter H., Siu I.M., Gallia G.L., Olivi A., McLendon R., Rasheed B.A., Keir S., Nikolskaya T., Nikolsky Y., Busam D.A., Tekleab H., Diaz L.A., Jr., Hartigan J., Smith D.R., Strausberg R.L., Marie S.K., Shinjo S.M., Yan H., Riggins G.J., Bigner D.D., Karchin R., Papadopoulos N., Parmigiani G., Vogelstein B., Velculescu V.E., Kinzler K.W., An integrated genomic analysis of human glioblastoma multiforme, Science, 2008; 321 (5897):1807-1812. [24] Kleihues P., Ohgaki H., Primary and secondary glioblastomas: from concept to clinical diagnosis, Neuro-Oncology, 1999; 1 (1):44-51. [25] Verhaak R.G., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer cell, 2010; 17 (1):98-110. [26] Oliva C.R., Nozell S.E., Diers A., McClugage S.G., Sarkaria J.N., Markert J.M., Darley-Usmar V.M., Bailey S.M., Gillespie G.Y., Landar A., Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain, Journal of Biological Chemistry, 2010; 285 (51):39759-39767. [27] Hatanpaa K.J., Burma S., Zhao D., Habib A.A., Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance, Neoplasia, 2010; 12 (9):675-684. [28] Yang Y., Shao N., Luo G., Li L., Zheng L., Nilsson-Ehle P., Xu N., Mutations of PTEN gene in gliomas correlate to tumor differentiation and short-term survival rate, Anticancer research, 2010; 30 (3):981-985. [29] Taylor E.T., Furnari B.F., Cavenee K.W., Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance, Current cancer drug targets, 2012; 12 (3):197-209. [30] Annovazzi L., Mellai M., Caldera V., Valente G., Tessitore L., Schiffer D., mTOR, S6 and AKT expression in relation to proliferation and apoptosis/autophagy in glioma, Anticancer research, 2009; 29 (8):3087-3094. [31] Rahaman S.O., Harbor P.C., Chernova O., Barnett G.H., Vogelbaum M.A., Haque S.J., Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells, Oncogene, 2002; 21 (55):8404-8413. [32] Hayes J.D., Pulford D.J., The glut athione S-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part I, Critical reviews in biochemistry and molecular biology, 1995; 30 (6):445-520. [33] Tew K.D., Glutathione-associated enzymes in anticancer drug resistance, Cancer research, 1994; 54 (16):4313-4320. [34] Michael M., Doherty M., Tumoral drug metabolism: overview and its implications for cancer therapy, Journal of Clinical Oncology, 2005; 23 (1):205-229. [35] Findlay V.J., Townsend D.M., Tew K.D., Glutathione and Glutathione S-Transferases in Drug Resistance, in: B.A. Teicher (Ed.) Cancer Drug Resistance, Humana Press 2006, pp. 213-221. [36] Colvin O.M., Friedman H.S., Gamcsik M.P., Fenselau C., Hilton J., Role of glutathione in cellular resistance to alkylating agents, Advances in enzyme regulation, 1993; 33:19-26. [37] Lindequist U., Marine-derived pharmaceuticals–challenges and opportunities, Biomolecules & therapeutics, 2016; 24 (6):561. [38] Malve H., Exploring the ocean for new drug developments: Marine pharmacology, Journal of Pharmacy and Bioallied Sciences, 2015; 8 (2):83-91. [39] Indumathy S., Dass C.R., Finding chemo: the search for marine-based pharmaceutical drugs active against cancer, Journal of Pharmacy and Pharmacology, 2013; 65 (9):1280-1301. [40] Mayer A.M.S., Glaser K.B., Cuevas C., Jacobs R.S., Kem W., Little R.D., McIntosh J.M., Newman D.J., Potts B.C., Shuster D.E., Marine Pharmaceutical: The Clinical Pipeline. 2019. Retrieved from http://marinepharmacology.midwestern.edu/clinical_pipeline.html. [41] Lee W.H., Yeh M.Y., Tu Y.C., Han S.H., Wang Y.C., Establishment and characterization of a malignant glioma cell line, GBM8401/TSGH, NDMC, Journal of surgical oncology, 1988; 38 (3):173-181. [42] Darshan N., Manonmani H., Prodigiosin and its potential applications, Journal of food science and technology, 2015; 52 (9):5393-5407. [43] Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced drug delivery reviews, 1997; 23 (1-3):3-25. [44] Campas C., Dalmau M., Montaner B., Barragan M., Bellosillo B., Colomer D., Pons G., Pérez-Tomás R., Gil J., Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia, Leukemia, 2003; 17 (4):746-750. [45] Espona-Fiedler M., Soto-Cerrato V., Hosseini A., Lizcano J., Guallar V., Quesada R., Gao T., Pérez-Tomás R., Identification of dual mTORC1 and mTORC2 inhibitors in melanoma cells: prodigiosin vs. obatoclax, Biochemical pharmacology, 2012; 83 (4):489-496. [46] Montaner B., Navarro S., Piqué M., Vilaseca M., Martinell M., Giralt E., Gil J., Pérez‐Tomás R., Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines, British journal of pharmacology, 2000; 131 (3):585-593. [47] Wang Z., Li B., Zhou L., Yu S., Su Z., Song J., Sun Q., Sha O., Wang X.M., Jiang W.Q., Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells, Proceedings of the National Academy of Sciences, 2016; 113 (46):13150-13155. [48] Prabhu V.V., Hong B., Allen J.E., Zhang S., Lulla A.R., Dicker D.T., El-Deiry W.S., Small-Molecule Prodigiosin Restores p53 Tumor Suppressor Activity in Chemoresistant Colorectal Cancer Stem Cells via c-Jun-Mediated ΔNp73 Inhibition and p73 Activation, Cancer research, 2016; 76 (7):1989-1999. [49] Tomás R.P., Ruir C.D., Montaner B., Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1, Histology and histopathology, 2001; 16 (2):415-421. [50] Cheng S.-Y., Chen N.-F., Kuo H.-M., Yang S.-N., Sung C.-S., Sung P.-J., Wen Z.-H., Chen W.-F., Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells, Apoptosis, 2018; 23 (5-6):314-328. [51] Iurlaro R., Muñoz‐Pinedo C., Cell death induced by endoplasmic reticulum stress, The FEBS journal, 2016; 283 (14):2640-2652. [52] Senft D., Ze’ev A.R., UPR, autophagy, and mitochondria crosstalk underlies the ER stress response, Trends in biochemical sciences, 2015; 40 (3):141-148. [53] Stjepanovic G., Davies C.W., Stanley R.E., Ragusa M.J., Hurley J.H., Assembly and dynamics of the autophagy-initiating Atg1 complex, Proceedings of the National Academy of Sciences, 2014; 111 (35):12793-12798. [54] Russell R.C., Tian Y., Yuan H., Park H.W., Chang Y.-Y., Kim J., Kim H., Neufeld T.P., Dillin A., Guan K.-L., ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase, Nature cell biology, 2013; 15 (7):741-750. [55] Axe E.L., Walker S.A., Manifava M., Chandra P., Roderick H.L., Habermann A., Griffiths G., Ktistakis N.T., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum, The Journal of cell biology, 2008; 182 (4):685-701. [56] Simonsen A., Tooze S.A., Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes, The Journal of cell biology, 2009; 186 (6):773-782. [57] Pattingre S., Espert L., Biard-Piechaczyk M., Codogno P., Regulation of macroautophagy by mTOR and Beclin 1 complexes, Biochimie, 2008; 90 (2):313-323. [58] Ohsumi Y., Molecular dissection of autophagy: two ubiquitin-like systems, Nature Reviews Molecular Cell Biology, 2001; 2 (3):211-216. [59] Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gélinas C., Fan Y., Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis, Cancer cell, 2006; 10 (1):51-64. [60] Tang D., Kang R., Livesey K.M., Cheh C.-W., Farkas A., Loughran P., Hoppe G., Bianchi M.E., Tracey K.J., Zeh H.J., Endogenous HMGB1 regulates autophagy, The Journal of cell biology, 2010; 190 (5):881-892. [61] Shao Y., Gao Z., Marks P.A., Jiang X., Apoptotic and autophagic cell death induced by histone deacetylase inhibitors, Proceedings of the National Academy of Sciences, 2004; 101 (52):18030-18035. [62] Kanzawa T., Zhang L., Xiao L., Germano I.M., Kondo Y., Kondo S., Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3, Oncogene, 2005; 24 (6):980-991. [63] Eisenberg-Lerner A., Bialik S., Simon H.-U., Kimchi A., Life and death partners: apoptosis, autophagy and the cross-talk between them, Cell Death & Differentiation, 2009; 16 (7):966-975. [64] Tsujimoto Y., Shimizu S., Another way to die: autophagic programmed cell death, Cell Death & Differentiation, 2005; 12:1528-1534. [65] Clarke P.G., Developmental cell death: morphological diversity and multiple mechanisms, Anatomy and embryology, 1990; 181 (3):195-213. [66] Levine B., Yuan J., Autophagy in cell death: an innocent convict?, The Journal of clinical investigation, 2005; 115 (10):2679-2688. [67] Eberhart K., Oral O., Gozuacik D., Induction of autophagic cell death by anticancer agents, Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, and Infection. Amsterdam, the Netherlands: Elsevier Academic Press, 2013:179-202. [68] Puissant A., Robert G., Fenouille N., Luciano F., Cassuto J.-P., Raynaud S., Auberger P., Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation, Cancer research, 2010; 70 (3):1042-1052. [69] Vara D., Salazar M., Olea-Herrero N., Guzmán M., Velasco G., Díaz-Laviada I., Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy, Cell Death & Differentiation, 2011; 18 (7):1099-1111. [70] Liu Y.-L., Yang P.-M., Shun C.-T., Wu M.-S., Weng J.-R., Chen C.-C., Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma, Autophagy, 2010; 6 (8):1057-1065. [71] Cao Q., Yu C., Xue R., Hsueh W., Pan P., Chen Z., Wang S., McNutt M., Gu J., Autophagy induced by suberoylanilide hydroxamic acid in Hela S3 cells involves inhibition of protein kinase B and up-regulation of Beclin 1, The international journal of biochemistry & cell biology, 2008; 40 (2):272-283. [72] Pandya Martin A., Mitchell C., Rahmani M., Nephew K.P., Grant S., Dent P., Inhibition of MCL-1 enhances lapatinib toxicity and overcomes lapatinib resistance via BAK-dependent autophagy, Cancer biology & therapy, 2009; 8 (21):2084-2096. [73] Li X., Lu Y., Pan T., Fan Z., Roles of autophagy in cetuximab-mediated cancer therapy against EGFR, Autophagy, 2010; 6 (8):1066-1077. [74] Marquez R.T., Xu L., Bcl2: Beclin 1 complex: multiple mechanisms regulating autophagy/apoptosis toggle switch, American Journal of Cancer Research, 2012; 2 (2):214-221. [75] Jang G.-H., Lee M., BH3-mimetic gossypol-induced autophagic cell death in mutant BRAF melanoma cells with high expression of p21 Cip1, Life sciences, 2014; 102 (1):41-48. [76] Martinez-Outschoorn U.E., Whitaker-Menezes D., Pavlides S., Chiavarina B., Bonuccelli G., Trimmer C., Tsirigos A., Migneco G., Witkiewicz A.K., Balliet R.M., The autophagic tumor stroma model of cancer or “battery-operated tumor growth” a simple solution to the autophagy paradox, Cell cycle, 2010; 9 (21):4297-4306. [77] Sano R., Reed J.C., ER stress-induced cell death mechanisms, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013; 1833 (12):3460-3470. [78] Oyadomari S., Mori M., Roles of CHOP/GADD153 in endoplasmic reticulum stress, Cell Death & Differentiation, 2004; 11 (4):381-389. [79] Li J.R., Cheng C.L., Yang W.J., Yang C.R., Ou Y.C., Wu M.J., Ko J.L., FIP-gts potentiate autophagic cell death against cisplatin-resistant urothelial cancer cells, Anticancer research, 2014; 34 (6):2973-2983. [80] Sui X., Chen R., Wang Z., Huang Z., Kong N., Zhang M., Han W., Lou F., Yang J., Zhang Q., Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment, Cell death & disease, 2013; 4 (10):e838. [81] Koul D., PTEN signaling pathways in glioblastoma, Cancer Biol Ther, 2008; 7 (9):1321-1325. [82] Pal I., Mandal M., PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes, Acta Pharmacologica Sinica 2012; 33 (12):1441-1458. [83] Dancey J., mTOR signaling and drug development in cancer, Nature Reviews Clinical Oncology, 2010; 7 (4):209-219. [84] Chautard E., Loubeau G., Tchirkov A., Chassagne J., Vermot-Desroches C., Morel L., Verrelle P., Akt signaling pathway: a target for radiosensitizing human malignant glioma, Neuro-Oncology, 2010; 12 (5):434-443. [85] Liu F.S., Mechanisms of chemotherapeutic drug resistance in cancer therapy—a quick review, Taiwanese Journal of Obstetrics and Gynecology, 2009; 48 (3):239-244. [86] Hong X., Chedid K., Kalkanis S.N., Glioblastoma cell line-derived spheres in serum‑containing medium versus serum-free medium: A comparison of cancer stem cell properties, International journal of oncology, 2012; 41 (5):1693-1700. [87] Suenderhauf C., Hammann F., Huwyler J., Computational prediction of blood-brain barrier permeability using decision tree induction, Molecules, 2012; 17 (9):10429-10445. [88] Kimura S., Noda T., Yoshimori T., Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3, Autophagy, 2007; 3 (5):452-460. [89] Panosyan E.H., Laks D.R., Masterman‐Smith M., Mottahedeh J., Yong W.H., Cloughesy T.F., Lazareff J.A., Mischel P.S., Moore T.B., Kornblum H.I., Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multi‐passageable neurosphere formation, Pediatric blood & cancer, 2010; 55 (4):644-651. [90] Müller‐Taubenberger A., Lupas A.N., Li H., Ecke M., Simmeth E., Gerisch G., Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis, The EMBO journal, 2001; 20 (23):6772-6782. [91] Dunn K.W., Kamocka M.M., McDonald J.H., A practical guide to evaluating colocalization in biological microscopy, American Journal of Physiology-Cell Physiology, 2011; 300 (4):C723-C742. [92] Evans J.D., Straightforward statistics for the behavioral sciences, Brooks/Cole1996. [93] van Schadewijk A., van’t Wout E.F., Stolk J., Hiemstra P.S., A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress, Cell Stress and Chaperones, 2012; 17 (2):275-279. [94] Li J., Ni M., Lee B., Barron E., Hinton D., Lee A., The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells, Cell Death & Differentiation, 2008; 15 (9):1460-1471. [95] Liu K., Shi Y., Guo X., Wang S., Ouyang Y., Hao M., Liu D., Qiao L., Li N., Zheng J., CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2, Cell death & disease, 2014; 5 (7):e1323. [96] Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., Kominami E., Ohsumi Y., Yoshimori T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, The EMBO journal, 2000; 19 (21):5720-5728. [97] Shimizu S., Konishi A., Nishida Y., Mizuta T., Nishina H., Yamamoto A., Tsujimoto Y., Involvement of JNK in the regulation of autophagic cell death, Oncogene, 2010; 29 (14):2070-2082. [98] Nihira K., Miki Y., Ono K., Suzuki T., Sasano H., An inhibition of p62/SQSTM1 caused autophagic cell death of several human carcinoma cells, Cancer science, 2014; 105 (5):568-575. [99] Karch J., Schips T.G., Maliken B.D., Brody M.J., Sargent M.A., Kanisciak O., Molkentin J.D., Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak, eLife, 2017; 6 pii:e30543. [100] Liu Y., Levine B., Autosis and autophagic cell death: the dark side of autophagy, Cell Death & Differentiation, 2015; 22 (3):367-376. [101] Monge M., Vilaseca M., Soto-Cerrato V., Montaner B., Giralt E., Pérez-Tomás R., Proteomic analysis of prodigiosin-induced apoptosis in a breast cancer mitoxantrone-resistant (MCF-7 MR) cell line, Investigational new drugs, 2007; 25 (1):21-29. [102] Lichstein H.C., Van De Sand V.F., The antibiotic activity of violacein, prodigiosin, and phthiocol, Journal of bacteriology, 1946; 52 (1):145. [103] Hosseini A., Espona-Fiedler M., Soto-Cerrato V., Quesada R., Pérez-Tomás R., Guallar V., Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members, PLoS ONE, 2013; 8 (2):e57562. [104] Zhang J., Shen Y., Liu J., Wei D., Antimetastatic effect of prodigiosin through inhibition of tumor invasion, Biochemical pharmacology, 2005; 69 (3):407-414. [105] Soto-Cerrato V., Viñals F., Lambert J.R., Pérez-Tomás R., The anticancer agent prodigiosin induces p21 WAF1/CIP1 expression via transforming growth factor-beta receptor pathway, Biochemical pharmacology, 2007; 74 (9):1340-1349. [106] Alison M.R., Lim S.M., Nicholson L.J., Cancer stem cells: problems for therapy?, The Journal of pathology, 2011; 223 (2):148-162. [107] Chen Y.C., Ingram P.N., Fouladdel S., McDermott S.P., Azizi E., Wicha M.S., Yoon E., High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis, Scientific reports, 2016; 6:27301. [108] Ojha R., Bhattacharyya S., Singh S.K., Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis, BioResearch open access, 2015; 4 (1):97-108. [109] Jiang H., Gomez-Manzano C., Aoki H., Alonso M.M., Kondo S., McCormick F., Xu J., Kondo Y., Bekele B.N., Colman H., Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death, Journal of the National Cancer Institute, 2007; 99 (18):1410-1414. [110] Kanzawa T., Germano I., Komata T., Ito H., Kondo Y., Kondo S., Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells, Cell Death & Differentiation, 2004; 11 (4):448-457. [111] Tsukada M., Ohsumi Y., Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae, FEBS letters, 1993; 333 (1-2):169-174. [112] Bernales S., Schuck S., Walter P., ER-phagy: selective autophagy of the endoplasmic reticulum, Autophagy, 2007; 3 (3):285-287. [113] McLendon R., Friedman A., Bigner D., Van Meir E.G., Brat D.J., Mastrogianakis G.M., Olson J.J., Mikkelsen T., Lehman N., Aldape K., Comprehensive genomic characterization defines human glioblastoma genes and core pathways, Nature, 2008; 455 (7216):1061-1068. [114] Carico C., Nuño M., Mukherjee D., Elramsisy A., Dantis J., Hu J., Rudnick J., John S.Y., Black K.L., Bannykh S.I., Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era, PLoS ONE, 2012; 7 (3):e33684. [115] Gozuacik D., Kimchi A., Autophagy as a cell death and tumor suppressor mechanism, Oncogene, 2004; 23 (16):2891-2906. [116] Fantus D., Rogers N.M., Grahammer F., Huber T.B., Thomson A.W., Roles of mTOR complexes in the kidney: implications for renal disease and transplantation, Nature Reviews Nephrology, 2016; 12 (10):587-609. [117] Gozuacik D., Kimchi A., Autophagy and cell death, Current topics in developmental biology, 2007; 78:217-245. [118] Schweichel J.U., Merker H.J., The morphology of various types of cell death in prenatal tissues, Teratology, 1973; 7 (3):253-266. [119] Eberhart K., Oral O., Gozuacik D., Autophagy, Elsevier Inc. Chapters2013. [120] Ogata M., Hino S.-i., Saito A., Morikawa K., Kondo S., Kanemoto S., Murakami T., Taniguchi M., Tanii I., Yoshinaga K., Autophagy is activated for cell survival after endoplasmic reticulum stress, Molecular and cellular biology, 2006; 26 (24):9220-9231. [121] Leppä S., Bohmann D., Diverse functions of JNK signaling and c-Jun in stress response and apoptosis, Oncogene, 1999; 18 (45):6158-6162. [122] Wei Y., Pattingre S., Sinha S., Bassik M., Levine B., JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy, Molecular cell, 2008; 30 (6):678-688. [123] Vegliante R., Desideri E., Di Leo L., Ciriolo M.R., Dehydroepiandrosterone triggers autophagic cell death in human hepatoma cell line HepG2 via JNK-mediated p62/SQSTM1 expression, Carcinogenesis, 2016:bgw003. [124] Zhang C., Jia X., Wang K., Bao J., Li P., Chen M., Wan J.-B., Su H., Mei Z., He C., Polyphyllin VII induces an autophagic cell death by activation of the JNK pathway and inhibition of PI3K/AKT/mTOR pathway in HepG2 cells, PLoS ONE, 2016; 11 (1):e0147405. [125] Strano S., Dell'Orso S., Di Agostino S., Fontemaggi G., Sacchi A., Blandino G., Mutant p53: an oncogenic transcription factor, Oncogene, 2007; 26 (15):2212-2219. [126] Muller P.A., Vousden K.H., Mutant p53 in cancer: new functions and therapeutic opportunities, Cancer cell, 2014; 25 (3):304-317. [127] Wang X., Chen J.-x., Liu J.-p., You C., Liu Y.-h., Mao Q., Gain of function of mutant TP53 in glioblastoma: prognosis and response to temozolomide, Annals of surgical oncology, 2014; 21 (4):1337-1344. [128] Cordani M., Butera G., Pacchiana R., Donadelli M., Molecular interplay between mutant p53 proteins and autophagy in cancer cells, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2016; 1867 (1):19-28. [129] Hong B., Prabhu V.V., Zhang S., van den Heuvel A.P.J., Dicker D.T., Kopelovich L., El-Deiry W.S., Prodigiosin rescues deficient p53 signaling and antitumor effects via upregulating p73 and disrupting its interaction with mutant p53, Cancer research, 2014; 74 (4):1153-1165. [130] Batash R., Asna N., Schaffer P., Francis N., Schaffer M., Glioblastoma multiforme, diagnosis and treatment; recent literature review, Current medicinal chemistry, 2017; 24 (27):3002-3009. [131] Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, The lancet oncology, 2009; 10 (5):459-466. [132] Kartal-Yandim M., Adan-Gokbulut A., Baran Y., Molecular mechanisms of drug resistance and its reversal in cancer, Critical reviews in biotechnology, 2016; 36 (4):716-726. [133] Haar C.P., Hebbar P., Wallace IV G.C., Das A., Vandergrift III W.A., Smith J.A., Giglio P., Patel S.J., Ray S.K., Banik N.L., Drug resistance in glioblastoma: a mini review, Neurochemical research, 2012; 37 (6):1192-1200. [134] Housman G., Byler S., Heerboth S., Lapinska K., Longacre M., Snyder N., Sarkar S., Drug resistance in cancer: an overview, Cancers, 2014; 6 (3):1769-1792. [135] Desantis V., Saltarella I., Lamanuzzi A., Mariggiò M., Racanelli V., Vacca A., Frassanito M., Autophagy: A new mechanism of prosurvival and drug resistance in multiple myeloma, Translational oncology, 2018; 11 (6):1350-1357. [136] Choi Y.H., Yu A.M., ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development, Current pharmaceutical design, 2014; 20 (5):793-807. [137] Alfarouk K.O., Stock C.-M., Taylor S., Walsh M., Muddathir A.K., Verduzco D., Bashir A.H., Mohammed O.Y., Elhassan G.O., Harguindey S., Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp, Cancer cell international, 2015; 15 (1):71. [138] Di Pietro G., Magno L.A.V., Rios-Santos F., Glutathione S-transferases: an overview in cancer research, Expert opinion on drug metabolism & toxicology, 2010; 6 (2):153-170. [139] Pljesa-Ercegovac M., Savic-Radojevic A., Matic M., Coric V., Djukic T., Radic T., Simic T., Glutathione Transferases: Potential Targets to Overcome Chemoresistance in Solid Tumors, International journal of molecular sciences, 2018; 19 (12):3785. [140] Mikstacki A., Zakerska-Banaszak O., Skrzypczak-Zielinska M., Tamowicz B., Szalata M., Slomski R., Glutathione S-transferase as a toxicity indicator in general anesthesia: genetics and biochemical function, Journal of clinical anesthesia, 2015; 27 (1):73-79. [141] Wu B., Dong D., Human cytosolic glutathione transferases: structure, function, and drug discovery, Trends in pharmacological sciences, 2012; 33 (12):656-668. [142] Buetler T.M., Eaton D.L., Glutathione S‐transferases: Amino acid sequence comparison, classification and phylogenetic relationship, Journal of Environmental Science & Health Part C, 1992; 10 (2):181-203. [143] Litwack G., Ketterer B., Arias I.M., Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions, Nature, 1971; 234:466-467. [144] Tipping E., Ketterer B., Koskelo P., The binding of porphyrins by ligandin, Biochemical Journal, 1978; 169:509-516. [145] Danielson U.H., Mannervik B., Kinetic independence of the subunits of cytosolic glutathione transferase from the rat, Biochemical Journal, 1985; 231:263-267. [146] Hayes J.D., Flanagan J.U., Jowsey I.R., Glutathione transferases, Annual Review of Pharmacology and Toxicology, 2005; 45:51-88. [147] Sheehan D., Meade G., Foley V.M., Dowd C.A., Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily, Biochemical Journal, 2001; 360 (Pt 1):1-16. [148] Howells R., Dhar K., Hoban P., Jones P., Fryer A., Redman C., Strange R., Association between glutathione‐S‐transferase GSTP1 genotypes, GSTP1 over‐expression, and outcome in epithelial ovarian cancer, International journal of gynecological cancer, 2004; 14 (2):242-250. [149] Moorghen M., Cairns J., Forrester L., Hayes J., Hall A., Cattan A., Wolf C., Harris A., Enhanced expression of glutathione S-transferases in colorectal carcinoma compared to non-neoplastic mucosa, Carcinogenesis, 1991; 12 (1):13-17. [150] Mulder T.P., Verspaget H.W., Sier C.F., Roelofs H.M., Ganesh S., Griffioen G., Peters W.H., Glutathione S-transferase π in colorectal tumors is predictive for overall survival, Cancer research, 1995; 55 (12):2696-2702. [151] Koomägi R., Stammler G., Manegold C., Mattern J., Volm M., Expression of resistance-related proteins in tumoral and peritumoral tissues of patients with lung cancer, Cancer letters, 1996; 110 (1):129-136. [152] Okuyama T., Maehara Y., Endo K., Baba H., Adachi Y., Kuwano M., Sugimachi K., Expression of glutathione s‐transferasepi and sensitivity of human gastric cancer cells to cisplatin, Cancer, 1994; 74 (4):1230-1236. [153] Bernig T., Ritz S., Brodt G., Volkmer I., Staege M.S., Glutathione-S-transferases and Chemotherapy Resistance of Hodgkin's Lymphoma Cell Lines, Anticancer research, 2016; 36 (8):3905-3915. [154] Yang F.M., Gao B., Chen W., Du E.F., Liang Y., Hu X.X., Yang X.F., Expression of resistance gene and prognosis of chemotherapy in primary epithelial ovarian cancer, Medicine (Baltimore), 2018; 97 (41):e12364. [155] Gou W., Shen D., Yang X., Zhao S., Liu Y., Sun H., Su R., Luo J., Zheng H., ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression, Oncotarget, 2015; 6 (23):19552-19579. [156] Tsou S.H., Chen T.M., Hsiao H.T., Chen Y.H., A Critical Dose of Doxorubicin Is Required to Alter the Gene Expression Profiles in MCF-7 Cells Acquiring Multidrug Resistance, PLoS ONE, 2015; 10 (1):e0116747. [157] Mian O.Y., Khattab M.H., Hedayati M., Coulter J., Abubaker-Sharif B., Schwaninger J.M., Veeraswamy R.K., Brooks J.D., Hopkins L., Shinohara D.B., Cornblatt B., Nelson W.G., Yegnasubramanian S., DeWeese T.L., GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress, Prostate, 2015; 76 (2):199-206. [158] Chen S., Jiao J.W., Sun K.X., Zong Z.H., Zhao Y., MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs, Drug design, development and therapy, 2015; 9:5225. [159] Wang Z.P., Liang S.A., Lian X., Liu L., Zhao S., Xuan Q.J., Guo L., Liu H., Yang Y.G., Dong T.Y., Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis, Scientific reports, 2015; 5:9301. [160] Allen T.C., Granville L.A., Cagle P.T., Haque A., Zander D.S., Barrios R., Expression of glutathione S-transferase π and glutathione synthase correlates with survival in early stage non–small cell carcinomas of the lung, Human pathology, 2007; 38 (2):220-227. [161] Moyer A.M., Salavaggione O.E., Wu T.-Y., Moon I., Eckloff B.W., Hildebrandt M.A., Schaid D.J., Wieben E.D., Weinshilboum R.M., Glutathione S-transferase P1: gene sequence variation and functional genomic studies, Cancer research, 2008; 68 (12):4791-4801. [162] Lu C., Spitz M.R., Zhao H., Dong Q., Truong M., Chang J.Y., Blumenschein G.R., Hong W.K., Wu X., Association between glutathione S‐transferase π polymorphisms and survival in patients with advanced nonsmall cell lung carcinoma, Cancer, 2006; 106 (2):441-447. [163] Sun N., Sun X., Chen B., Cheng H., Feng J., Cheng L., Lu Z., MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer, Cancer chemotherapy and pharmacology, 2010; 65 (3):437-446. [164] Hand P.A., Inskip A., Gilford J., Alldersea J., Elexpuru-Camiruaga J., Hayes J.D., Jones P.W., Strange R.C., Fryer A.A., Allelism at the glutathione S-transferase GSTM3 locus: interactions with GSTM1 and GSTT1 as risk factors for astrocytoma, Carcinogenesis, 1996; 17 (9):1919-1922. [165] Rowe J., Nieves E., Listowsky I., Subunit diversity and tissue distribution of human glutathione S-transferases: interpretations based on electrospray ionization-MS and peptide sequence-specific antisera, Biochemical Journal, 1997; 325:481-486. [166] Deponte M., Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, Biochimica et Biophysica Acta (BBA)-General Subjects, 2013; 1830 (5):3217-3266. [167] Adler V., Yin Z., Fuchs S.Y., Benezra M., Rosario L., Tew K.D., Pincus M.R., Sardana M., Henderson C.J., Wolf C.R., Regulation of JNK signaling by GSTp, The EMBO journal, 1999; 18 (5):1321-1334. [168] De Luca A., Federici L., De Canio M., Stella L., Caccuri A.M., New insights into the mechanism of JNK1 inhibition by glutathione transferase P1-1, Biochemistry, 2012; 51 (37):7304-7312. [169] Filomeni G., Turella P., Dupuis M.L., Forini O., Ciriolo M.R., Cianfriglia M., Pezzola S., Federici G., Caccuri A.M., 6-(7-Nitro-2, 1, 3-benzoxadiazol-4-ylthio) hexanol, a specific glutathione S-transferase inhibitor, overcomes the multidrug resistance (MDR)-associated protein 1–mediated MDR in small cell lung cancer, Molecular cancer therapeutics, 2008; 7 (2):371-379. [170] Li X., Liang Q., Liu W., Zhang N., Xu L., Zhang X., Zhang J., Sung J., Yu J., Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway, Oncogene, 2015; 35 (19):2435-2464. [171] Rubinstein A.D., Kimchi A., Life in the balance–a mechanistic view of the crosstalk between autophagy and apoptosis, Journal of cell science, 2012; 125 (22):5259-5268. [172] Decuypere J.-P., Parys J.B., Bultynck G., Regulation of the autophagic Bcl-2/Beclin 1 interaction, Cells, 2012; 1 (3):284-312. [173] Kotsafti A., Farinati F., Cardin R., Cillo U., Nitti D., Bortolami M., Autophagy and apoptosis-related genes in chronic liver disease and hepatocellular carcinoma, BMC gastroenterology, 2012; 12 (1):118. [174] Huenchuguala S., Muñoz P., Zavala P., Villa M., Cuevas C., Ahumada U., Graumann R., Nore B.F., Couve E., Mannervik B., Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction, Autophagy, 2014; 10 (4):618-630. [175] Piaggi S., Raggi C., Corti A., Pitzalis E., Mascherpa M.C., Saviozzi M., Pompella A., Casini A.F., Glutathione transferase omega 1-1 (GSTO1-1) plays an anti-apoptotic role in cell resistance to cisplatin toxicity, Carcinogenesis, 2010; 31 (5):804-811. [176] Paul S., Jakhar R., Bhardwaj M., Kang S.C., Glutathione-S-transferase omega 1 (GSTO1–1) acts as mediator of signaling pathways involved in aflatoxin B1-induced apoptosis-autophagy crosstalk in macrophages, Free Radical Biology and Medicine, 2015; 89:1218-1230. [177] Laisney V., Van Cong N., Gross M., Frezal J., Human genes for glutathione S-transferases, Human genetics, 1984; 68 (3):221-227. [178] Campbell E., Takahashi Y., Abramovitz M., Peretz M., Listowsky I., A distinct human testis and brain mu-class glutathione S-transferase. Molecular cloning and characterization of a form present even in individuals lacking hepatic type mu isoenzymes, Journal of Biological Chemistry, 1990; 265 (16):9188-9193. [179] Beuckmann C.T., Fujimori K., Urade Y., Hayaishi O., Identification of mu-class glutathione transferases M2-2 and M3-3 as cytosolic prostaglandin E synthases in the human brain, Neurochemical research, 2000; 25 (5):733-738. [180] Blalock E.M., Geddes J.W., Chen K.C., Porter N.M., Markesbery W.R., Landfield P.W., Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses, Proceedings of the National Academy of Sciences of the United States of America, 2004; 101 (7):2173-2178. [181] Maes O.C., Xu S., Yu B., Chertkow H.M., Wang E., Schipper H.M., Transcriptional profiling of Alzheimer blood mononuclear cells by microarray, Neurobiology of aging, 2007; 28 (12):1795-1809. [182] Tetlow N., Robinson A., Mantle T., Board P., Polymorphism of human mu class glutathione transferases, Pharmacogenetics and Genomics, 2004; 14 (6):359-368. [183] Emahazion T., Feuk L., Jobs M., Sawyer S.L., Fredman D., St Clair D., Prince J.A., Brookes A.J., SNP association studies in Alzheimer's disease highlight problems for complex disease analysis, Trends in genetics, 2001; 17 (7):407-413. [184] Stavrinou P., Mavrogiorgou M.C., Polyzoidis K., Kreft-Kerekes V., Timmer M., Marselos M., Pappas P., Expression Profile of Genes Related to Drug Metabolism in Human Brain Tumors, PLoS One, 2015; 10 (11):e0143285. [185] Warburg O., Wind F., Negelein E., The metabolism of tumors in the body, The Journal of general physiology, 1927; 8 (6):519. [186] Warburg O., The metabolism of carcinoma cells, The Journal of Cancer Research, 1925; 9 (1):148-163. [187] Vander Heiden M.G., Cantley L.C., Thompson C.B., Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 2009; 324 (5930):1029-1033. [188] Liberti M.V., Locasale J.W., The Warburg effect: how does it benefit cancer cells?, Trends in biochemical sciences, 2016; 41 (3):211-218. [189] Agnihotri S., Zadeh G., Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions, Neuro-Oncology, 2015; 18 (2):160-172. [190] Poteet E., Choudhury G.R., Winters A., Li W., Ryou M.-G., Liu R., Tang L., Ghorpade A., Wen Y., Yuan F., Reversing the Warburg effect as a treatment for glioblastoma, Journal of Biological Chemistry, 2013; 288 (13):9153-9164. [191] Yuen C.A., Asuthkar S., Guda M.R., Tsung A.J., Velpula K.K., Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept, CNS oncology, 2016; 5 (2):101-108. [192] Sanzey M., Rahim S.A.A., Oudin A., Dirkse A., Kaoma T., Vallar L., Herold-Mende C., Bjerkvig R., Golebiewska A., Niclou S.P., Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma, PLoS ONE, 2015; 10 (5):e0123544. [193] Elstrom R.L., Bauer D.E., Buzzai M., Karnauskas R., Harris M.H., Plas D.R., Zhuang H., Cinalli R.M., Alavi A., Rudin C.M., Akt stimulates aerobic glycolysis in cancer cells, Cancer research, 2004; 64 (11):3892-3899. [194] Koukourakis M., Tsolou A., Pouliliou S., Lamprou I., Papadopoulou M., Ilemosoglou M., Kostoglou G., Ananiadou D., Sivridis E., Giatromanolaki A., Blocking LDHA glycolytic pathway sensitizes glioblastoma cells to radiation and temozolomide, Biochemical and biophysical research communications, 2017; 491 (4):932-938. [195] Azzalin A., Nato G., Parmigiani E., Garello F., Buffo A., Magrassi L., Inhibitors of glut/slc2a enhance the action of bcnu and temozolomide against high-grade gliomas, Neoplasia, 2017; 19 (4):364-373. [196] Velpula K.K., Guda M.R., Sahu K., Tuszynski J., Asuthkar S., Bach S.E., Lathia J.D., Tsung A.J., Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma, Oncotarget, 2017; 8 (22):35639-35655. [197] Ganapathy-Kanniappan S., Geschwind J.-F.H., Tumor glycolysis as a target for cancer therapy: progress and prospects, Molecular cancer, 2013; 12 (1):152. [198] Louie S.M., Grossman E.A., Crawford L.A., Ding L., Camarda R., Huffman T.R., Miyamoto D.K., Goga A., Weerapana E., Nomura D.K., GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity, Cell chemical biology, 2016; 23 (5):567-578. [199] Salhia B., Tran N.L., Symons M., Winkles J.A., Rutka J.T., Berens M.E., Molecular pathways triggering glioma cell invasion, Expert review of molecular diagnostics, 2006; 6 (4):613-626. [200] Shiraishi T., Verdone J.E., Huang J., Kahlert U.D., Hernandez J.R., Torga G., Zarif J.C., Epstein T., Gatenby R., McCartney A., Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells, Oncotarget, 2015; 6 (1):130. [201] Sawers L., Ferguson M., Ihrig B., Young H., Chakravarty P., Wolf C., Smith G., Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines, British journal of cancer, 2014; 111 (6):1150. [202] Wang W., Liu F., Wang C., Wang C., Tang Y., Jiang Z., Glutathione S‑transferase A1 mediates nicotine‑induced lung cancer cell metastasis by promoting epithelial‑mesenchymal transition, Experimental and therapeutic medicine, 2017; 14 (2):1783-1788. [203] Munoz J.L., Bliss S.A., Greco S.J., Ramkissoon S.H., Ligon K.L., Rameshwar P., Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity, Molecular Therapy—Nucleic Acids, 2013; 2 (10):e126. [204] Zhou Y., Sun K., Ma Y., Yang H., Zhang Y., Kong X., Wei L., Autophagy inhibits chemotherapy-induced apoptosis through downregulating Bad and Bim in hepatocellular carcinoma cells, Scientific reports, 2014; 4:5382. [205] Lee S.Y., Temozolomide resistance in glioblastoma multiforme, Genes & Diseases, 2016; 3 (3):198-210. [206] Angelastro J.M., Lamé M.W., Overexpression of CD133 promotes drug resistance in C6 glioma cells, Molecular Cancer Research, 2010; 8 (8):1105-1115. [207] van Thuijl H.F., Mazor T., Johnson B.E., Fouse S.D., Aihara K., Hong C., Malmström A., Hallbeck M., Heimans J.J., Kloezeman J.J., Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment, Acta neuropathologica, 2015; 129 (4):597-607. [208] Perazzoli G., Prados J., Ortiz R., Caba O., Cabeza L., Berdasco M., Gónzalez B., Melguizo C., Temozolomide resistance in glioblastoma cell lines: implication of MGMT, MMR, P-glycoprotein and CD133 expression, PLoS ONE, 2015; 10 (10):e0140131. [209] Warburg O., On the origin of cancer cells, Science, 1956; 123 (3191):309-314. [210] Yu L., Chen X., Sun X., Wang L., Chen S., The glycolytic switch in tumors: how many players are involved?, Journal of Cancer, 2017; 8 (17):3430. [211] Bhattacharya B., Omar M.F.M., Soong R., The Warburg effect and drug resistance, British journal of pharmacology, 2016; 173 (6):970-979. [212] Ouderkirk J.L., Krendel M., Non‐muscle myosins in tumor progression, cancer cell invasion, and metastasis, Cytoskeleton, 2014; 71 (8):447-463. [213] Undevia S.D., Gomez-Abuin G., Ratain M.J., Pharmacokinetic variability of anticancer agents, Nature Reviews Cancer, 2005; 5 (6):447. [214] Wang T.L., Diaz L.A., Jr., Romans K., Bardelli A., Saha S., Galizia G., Choti M., Donehower R., Parmigiani G., Shih Ie M., Iacobuzio-Donahue C., Kinzler K.W., Vogelstein B., Lengauer C., Velculescu V.E., Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients, Proceedings of the National Academy of Sciences, 2004; 101 (9):3089-3094. [215] Kitange G.J., Carlson B.L., Schroeder M.A., Grogan P.T., Lamont J.D., Decker P.A., Wu W., James C.D., Sarkaria J.N., Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts, Neuro-Oncology, 2009; 11 (3):281-291. [216] Tóth A., Brózik A., Szakács G., Sarkadi B., Hegedüs T., A novel mathematical model describing adaptive cellular drug metabolism and toxicity in the chemoimmune system, PLoS ONE, 2015; 10 (2):e0115533. [217] Arai T., Miyoshi Y., Kim S., Akazawa K., Maruyama N., Taguchi T., Tamaki Y., Noguchi S., Association of GSTP1 expression with resistance to docetaxel and paclitaxel in human breast cancers, European Journal of Surgical Oncology (EJSO), 2008; 34 (7):734-738. [218] Zou M., Hu X., Xu B., Tong T., Jing Y., Xi L., Zhou W., Lu J., Wang X., Yang X., Glutathione S‑transferase isozyme alpha 1 is predominantly involved in the cisplatin resistance of common types of solid cancer, Oncology reports, 2019; 41 (2):989-998. [219] Wang X., Li Y., Chen W., Wang Y., Hui L., Liu J., Li N., Zhang L., Zou Y., Wang F., Nrf-2/Gst-α mediated imatinib resistance through rapid 4-HNE clearance, Experimental cell research, 2017; 353 (2):72-78. [220] Stavrinou P., Mavrogiorgou M.-C., Polyzoidis K., Kreft-Kerekes V., Timmer M., Marselos M., Pappas P., Expression profile of genes related to drug metabolism in human brain tumors, PLoS ONE, 2015; 10 (11):e0143285. [221] Checa-Rojas A., Delgadillo-Silva L.F., del Castillo Velasco-Herrera M., Andrade-Domínguez A., Gil J., Santillán O., Lozano L., Toledo-Leyva A., Ramírez-Torres A., Talamas-Rohana P., GSTM3 and GSTP1: novel players driving tumor progression in cervical cancer, Oncotarget, 2018; 9 (31):21696. [222] Saitou M., Satta Y., Gokcumen O., Ishida T., Complex evolution of the GSTM gene family involves sharing of GSTM1 deletion polymorphism in humans and chimpanzees, BMC genomics, 2018; 19 (1):293. [223] Bhattacharjee P., Paul S., Banerjee M., Patra D., Banerjee P., Ghoshal N., Bandyopadhyay A., Giri A.K., Functional compensation of glutathione S-transferase M1 (GSTM1) null by another GST superfamily member, GSTM2, Scientific reports, 2013; 3:2704. [224] Gerson S.L., MGMT: its role in cancer aetiology and cancer therapeutics, Nature Reviews Cancer, 2004; 4 (4):296. [225] Meng W., Jiang Y., Ma J., Is the prognostic significance of O6-methylguanine-DNA methyltransferase promoter methylation equally important in glioblastomas of patients from different continents? A systematic review with meta-analysis, Cancer Management and Research, 2017; 9:411. [226] Jovanović N., Mitrović T., Cvetković V.J., Tošić S., Vitorović J., Stamenković S., Nikolov V., Kostić A., Vidović N., Krstić M., The Impact of MGMT Promoter Methylation and Temozolomide Treatment in Serbian Patients with Primary Glioblastoma, Medicina, 2019; 55 (2):34. [227] Guerrero-Martínez J.A., Reyes J.C., High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer, Scientific reports, 2018; 8 (1):2043. [228] Wang Y., Chen P.-M., Liu R.-B., Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection, World journal of gastrointestinal oncology, 2018; 10 (1):15. [229] Jin M., Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications, Experimental & molecular medicine, 2019; 51 (1):1. [230] Venza M., Visalli M., Catalano T., Beninati C., Teti D., Venza I., DSS1 promoter hypomethylation and overexpression predict poor prognosis in melanoma and squamous cell carcinoma patients, Human pathology, 2017; 60:137-146. [231] Gottlob K., Majewski N., Kennedy S., Kandel E., Robey R.B., Hay N., Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase, Genes & Development, 2001; 15 (11):1406-1418. [232] Yan X.L., Zhang X.B., Ao R., Guan L., Effects of shRNA-Mediated Silencing of PKM2 Gene on Aerobic Glycolysis, Cell Migration, Cell Invasion, and Apoptosis in Colorectal Cancer Cells, J Cell Biochem, 2017; 118 (12):4792-4803. [233] Han R.L., Wang F.P., Zhang P.A., Zhou X.Y., Li Y., miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA, Neoplasma, 2017; 64 (2):244-252. [234] Du J.Y., Wang L.F., Wang Q., Yu L.D., miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells, Oncology Reports, 2015; 33 (4):1890-1898. [235] Wolf A., Agnihotri S., Micallef J., Mukherjee J., Sabha N., Cairns R., Hawkins C., Guha A., Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme, The Journal of Experimental Medicine, 2011; 208 (2):313-326. [236] Kathagen-Buhmann A., Maire C.L., Weller J., Schulte A., Matschke J., Holz M., Ligon K.L., Glatzel M., Westphal M., Lamszus K., The secreted glycolytic enzyme GPI/AMF stimulates glioblastoma cell migration and invasion in an autocrine fashion but can have anti-proliferative effects, Neuro-Oncology, 2018; 20 (12):1594-1605. [237] Sanzey M., Abdul Rahim S.A., Oudin A., Dirkse A., Kaoma T., Vallar L., Herold-Mende C., Bjerkvig R., Golebiewska A., Niclou S.P., Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma, PLoS One, 2015; 10 (5):e0123544. [238] Said H.M., Hagemann C., Stojic J., Schoemig B., Vince G.H., Flentje M., Roosen K., Vordermark D., GAPDH is not regulated in human glioblastoma under hypoxic conditions, BMC Molecular Biology, 2007; 8:55. [239] Yang J.B., Xiang Y.S., Liu L.H., Wang X.Y., Phosphoglycerate kinase 1 gene knockdown suppresses the migration and invasion of glioma cells, International Journal of Clinical and Experimental Pathology 2016; 9 (9):9068-9076. [240] Desai S., Ding M., Wang B., Lu Z., Zhao Q., Shaw K., Yung W.K., Weinstein J.N., Tan M., Yao J., Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers, Oncotarget, 2014; 5 (18):8202-8210. [241] Kim J., Han J., Jang Y., Kim S.J., Lee M.J., Ryu M.J., Kweon G.R., Heo J.Y., High-capacity glycolytic and mitochondrial oxidative metabolisms mediate the growth ability of glioblastoma, International journal of oncology, 2015; 47 (3):1009-1016. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 18.118.217.142 論文開放下載的時間是 校外不公開 Your IP address is 18.118.217.142 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 永不公開 not available |
QR Code |