Responsive image
博碩士論文 etd-0824110-191949 詳細資訊
Title page for etd-0824110-191949
論文名稱
Title
河川水質及底泥管理策略之研究
Development of river water quality and sediment management strategies
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
144
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-29
繳交日期
Date of Submission
2010-08-24
關鍵字
Keywords
地質累積指數、富集因子、底泥品質指引、壓力循環系統、WASP、流域管理
Enrichment factor, Sediment quality guidelines, Watershed management, WASP, Geo-accumulation index
統計
Statistics
本論文已被瀏覽 5806 次,被下載 0
The thesis/dissertation has been browsed 5806 times, has been downloaded 0 times.
中文摘要
近年來,國內河川污染情形嚴重,有鑑於國人對流域環境品質要求日益殷切,行政院環保署亦針對國內河川進行相關整治規劃。此外,底泥長期累積河川污染物,因此進行河川整治規劃時,亦需將底泥視為河川環境惡化的一環,進行整體性的管理與整治評估。然而,台灣地狹人稠,多數都會型河川皆流經城市或工業區,河川沿岸並無太多空地使得現場河川整治空間形成不易克服之難題。離場整治技術雖可克服整治空間不足之難題,但離場整治不但造成昂貴的運輸費用且容易造成二次污染。本研究針對鹽水港溪進行河川污染調查、分析及推估之以掌握河川污染之來源及污染量,作為河川污染整治策略擬定之依據。
鹽水港溪位於高雄市北林路至二港口間,主要河段位於工業局管轄的臨海工業區內,中下游並環繞中國鋼鐵股份有限公司(以下簡稱中鋼)廠區,最後在中鋼碼頭附近流入高雄港二港口。近30年,自臨海工業區之工業廢水及工廠私自排放未經處理之工業廢水,以及河段上游未經妥善處理之大苓里之生活污水,均直接或間接的注入鹽水港溪,造成鹽水港溪之污染程度日益嚴重。
本研究為評估各種整治方案對於鹽水港溪之適用性,進行一系列的水文、水質及底泥採樣及調查,包括:主河段水文調查及水質採樣、主河段定點定時水文量測、沿岸箱涵與排水渠道之水文量測及採樣分析、底泥採樣分析等。採樣檢測結果除可用以評估污染現況,並將利用Water Quality Analysis Simulation Program (WASP)模式進行鹽水港溪之評估模式建構。WASP水質模式建立後,將可用於模擬整治策略實行後之水質狀況。此外,亦設計一套適用於河岸空間有限之底泥處理系統,並找尋適用於鹽水港溪底泥重金屬整治之最佳操作參數。
調查結果顯示,鹽水港溪主河段水質皆屬於嚴重污染,主要污染來源為沿岸之排水渠道。經由排水渠道污染負荷推估顯示部分排水渠道為造成鹽水港溪中游河段及下游河段生化需氧量及化學需氧量濃度偏高之主要點源污染。底泥調查結果顯示,各河段所含重金屬僅鎘有部分河段低於底泥品質指引(sediment quality guidelines, SQG)之標準,其餘皆超過SQG濃度數倍(銅最高濃度為SQG之8倍),顯示鹽水港溪重金屬對生物危害性風險很高。由富集因子(enrichment factor, EF)及地質累積指數(geo-accumulation index, Igeo)之計算結果可知,鹽水港溪主要人為重金屬污染源為銅、鋅、鉛、鎘,其次為鎳及鉻。鐵及錳於底泥及水質中檢測濃度雖高於人體健康標準,但計算結果顯示相較其他金屬,鐵及錳受到人為污染潛在性較低。銅、鋅、鉛應為相同污染源或此三種金屬於鹽水港溪底泥中之傳輸或分佈狀況相似,相關度分析亦可應證此推論。
以WASP模擬水質改善策略結果顯示,鹽水港溪源頭水量增加1 m3/s可使鹽水港溪符合河川水體戊類水體標準[溶氧(dissolved oxygen, DO)>2 mg/L],若配合截流系統,將排水渠道進行截流後,則可使鹽水港溪水質符合丁類水體標準(DO>3 mg/L, 懸浮固體物<100 mg/L)。為克服鹽水港溪沿岸設置底泥整治空間不足,本研究設計壓力循環系統配合螯合劑進行底泥重金屬整治實驗,以瞭解壓力循環系統應用於鹽水港溪底泥整治上之可行性。實驗結果顯示,壓力循環系統確實可有效提升底泥處理效率,於最大處理效率下,可縮短50%之底泥處理時間。針對鹽水港溪之底泥中銅萃取僅需2小時即可達到萃取平衡,可作為現場底泥整治之優先選擇。此外,壓力循環系統設備體積無須太大,可有效克服鹽水港溪因現場空間有限導致底泥整治不易之窘境。
本研究結果可預測在最佳管理策略實施前流域水質改善成效,並可預期短時間內對鹽水港溪水質影響,藉由全面性的鹽水港溪管理策略的提出,與本研究所獲得的經驗與結果可以提供未來其他流域管理策略之參考上的依據。
Abstract
The river water quality management strategy involves a series of complex inter-disciplinary decisions based on speculated responses of water and sediment quality to changing controls. In the aquatic system a rapid removal of the heavy metals from the water to sediments may occur by settling particles while some of these pollutants can be mobilized by getting accumulated into the biota from the sediments sink. Thus, sediment plays a major role in the determining pollution pattern of aquatic systems. It acts as both carriers and sinks for contaminants, reflecting the history of pollution, and providing a record of catchment inputs into aquatic ecosystems.
The Yan Shuei Gang River watershed is one the river watersheds in Kaohsiung City, Taiwan. It is 5-km long, drains a catchment of more than 1,200 ha. Part of the river water is from the domestic drainage areas located in the upper catchment. In Linhai Industrial Parks, there are more than 493 registered industrial factories that discharge their wastewater into the Yan Shuei Gang River. Thus, recent water and sediments quality analysis indicates that the Yan Shuei Gang River is heavily polluted.
The major objectives of this study were to (1) perform water quality and sediments sampling and analyses, (2) perform water quality simulation and demonstrates the model application to the Yan Shuei Gang River, (3) assess the water and sediments quality, (4) provide foci for immediate remediation efforts, (5) provide benchmark levels to test outcomes of future remediation efforts, (6) design a novel extraction technique that utilizes a mildly elevated pressure in consecutive cycles with a chelating agent for the sediment slurry.
Water quality investigation results show that the biochemical oxygen demand (BOD), ammonia-nitrogen (NH3-N), and suspended solid (SS) average concentrations in water samples of the Salt-water River varied from 10.2 to 194, 8.51 to 18.3, and 7.9 to 19.5 mg/L, respectively. The results of the chemical analysis of the Salt-water River surface sediments showed that the sediments present highly elevated Cd, Cr, Ni, Cu, Pb, Zn and Fe concentrations. Investigation results reveal that sediment samples contained significant amount of iron (up to 3.6%), Cr (up to 66.5 mg/kg), Pb (up to 36.5 mg/kg), Ni (up to 43 mg/kg), and Al (up to 1.8%). All heavy metal concentrations were higher than the world average, sediments average and sediment quality guidelines (SQGs). Although all metals showed varied concentrations, the approaches of factor analysis, normalized enrichment factor (EF), and the geo-accumulation index (Igeo) proposed in this paper were effectively used to differentiate the natural and anthropogenic sources of the metals.
Both the EF and Igeo indicated similar anthropogenic contamination degree of the metals. The potential acute toxicity in sediment of Yan Shuei Gang River was observed to be mainly due to Cu contamination. Cu was the major toxicity contributor accounting for 32-46% of the total toxicity in Salt-water River, followed by Zn.
The Water Quality Analysis Simulation Program (WASP) model developed by US Environmental Protection Agency (EPA) was selected as a water quality planning tool to perform the water quality evaluation. Modeling results show that the current daily pollutant inputs were much higher than the calculated carrying capacity for nutrients and BOD of the Yan Shuei Gang River. Based on the results from this study, the following remedial strategies have been proposed to minimize the impacts of industry and domestic source pollution on the water quality of Salt-water River: (1) increase the flow by transporting 1 m3/s unpolluted surface water from other sources to dilute the polluted river water, (2) construction of the intercepting systems to effective intercept and transport the untreated wastewater to the wastewater treatment systems.
The sediments batch extracted by 150 psi pressure cycles has the most Cu removed rater (70%), much higher than without treatment (55%) or with 90 psi pressure cycles treatment (65%). Pressure-assisted extraction achieves in 60 min the amounts of Cu equal to or exceeding those achieved in 240 min without pressure cycles under the same concentration conditions. This research indicates that the advantages of pressure cycle system are increased process speed, more thorough extraction, and reduced use of the chelating agent. The heightened treatment is explained by sediments aggregate fracturing upon pressure cycles that exposes the contaminants as well as by the chelating agents. The technique is expected to accelerate extraction treatment of a wide range of heavy metal contaminants, and it may provide treatment to dredged and stored contaminated sediments.
Experience obtained from this study will be helpful in designing the sediment and river management strategies for other similar river watersheds.
目次 Table of Contents
謝誌 I
摘要 III
Abstract V
目錄 VII
表目錄 X
圖目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究地點 2
1.3 研究目的 2
第二章 文獻回顧 5
2.1 場址概述 5
2.1.1 鹽水港溪背景介紹 5
2.1.2 鹽水港溪污染現況 7
2.2 水質模式評選與應用 7
2.2.1 水質模式之評選 8
2.2.2 水質模式WASP簡介 10
2.2.3 水質模式WASP模擬原理 12
2.3 底泥污染來源 16
2.3.1 底泥之定義 16
2.3.2 底泥重金屬污染來源 17
2.3.3 重金屬污染特性 19
2.4 底泥品質指標 25
2.4.1 底泥品質指引 26
2.4.2 底泥重金屬富集因子 27
2.4.3 地質累積指標 29
2.5 重金屬污染底泥整治技術 30
2.5.1 現地整治技術 30
2.5.2 離地整治技術 33
第三章 材料與方法 37
3.1 現場數據蒐集 37
3.2 水質及底泥分析方法建立 40
3.2.1 底泥耗氧量測定 40
3.2.2 底泥有機質分析 41
3.2.3 粒徑分析 41
3.3 底泥萃取實驗建立 43
3.3.1 實驗流程 43
3.3.2 實驗模組 43
3.3.3 實驗條件設定 43
3.4 水質模式建立 46
3.4.1模擬網格之建立 46
3.4.2 水理參數推估 48
3.4.3 祛氧係數K1 (BOD deoxygenation rate) 53
3.4.4 再曝氣係數k2 (reaeration rate constant) 53
3.4.5 延散係數 (dispersion exchange coefficient) 55
3.4.6 底泥耗氧率 55
3.4.7 點源污染 55
3.5 模式檢定方式 59
第四章 結果與討論 61
4.1 主河段之水文調查與採樣分析 61
4.1.1 主河段水文調查結果 61
4.1.2 水質監測結果 61
4-2 沿岸箱涵與排水渠道之水文量測及採樣分析 70
4.2.1 沿岸箱涵與排水渠道水文量測結果 70
4.2.2 沿岸箱涵與排水渠道水質量測結果 70
4.2.3 沿岸箱涵與排水渠道每日污染負荷計算 71
4.3 底泥品質分析 84
4.3.1 底泥基本特性 84
4.3.2 底泥重金屬分析 89
4.3.3 底泥品質指引 96
4.4水質整治策略研擬 100
4.4.1模式之驗證 100
4.4.2 整治策略模擬 100
4.5 底泥整治策略研擬 108
4.5.1 底泥基本特性分析 108
4.5.2 壓力循環系統破碎之效果 109
4.5.3 不同操作條件對壓力循環系統萃取之影響 109
4.5.4 萃取次數之影響 110
第五章 結論與建議 115
5.1 結論 115
5.2 建議 117
參考文獻 118
附錄一 中英對照表
參考文獻 References
中鋼股份有限公司,2007,中鋼公司租賃買賣土地土壤及地下水環境評估-臨海工業區60米大排底泥及水質檢測第一次採樣分析評估報告,期末報告,高雄。
王明光,2000,環境土壤化學,五南圖書出版公司,台北。
丁啟東,1989,河川底泥耗氧速率之研究,國立成功大學環境工程研究所,碩士論文,台南。
任家弘、林俊全、趙文愷、徐美玲,2004,高屏溪流域環境水資源分布與水質、水污染改遷之研究,地理學報,第三十七期,139-160。
行政院環保署,1998a,地面水體分類及水質標準,台北。
行政院環保署,2009b,放流水標準,台北。
行政院環保署,2010c,土壤及地下水污染整治法,台北。
行政院環保署,2010d,民國98年環境水質監測年報,台北。
吳岱曉,2003,鹽度影響河口底泥中重金屬遷移之研究,嘉南藥理科技大學環境工程衛生系,碩士論文,台南。
李漢鏗,2008, QUAL2K於舊濁水溪水污染防治之應用,逢甲大學水利工程與資源保育系,碩士論文,台中。
沈健全、薛朝安、張哲彰,2004,鹽水港溪生態工法現場模擬實驗研究計畫,期末報告,高苑綠中心。
林明峰,2002,都會區域排水感潮河段水質指數建立之探討-以高雄愛河為例,屏東科技大學環境工程與科學系,碩士論文,屏東。
林俊宏,2006,曝氣對淡水河系水質改善之研究(以WASP模式探討),國立聯合大學環境與安全衛生工程學系,碩士論文,苗栗。
施上栗、陳章波、胡通哲、葉明峰,2006,淡水河江子翠地區河防安全及河川生態棲地檢討規劃,經濟部水利署第十河川局,台北。
洪佐承,1998,淡水河感潮段之動態水質模擬,國立台灣大學土木工程學研究所,碩士論文,台北。
洪慶宜,2007,河川底泥中重金屬與有機鍵結物之相關性研究,2007年河川底泥管理及污染整治技術研討會,第36-41頁,台南。
高雄市政府,2007,高雄市污水下水道系統第四期實施計畫,計畫報告書,高雄。
高雄市政府工務局下水道工程處,2005,鹽水港溪整治再造計畫,規劃設計報告書,高雄。
單明陽、李振卿,2006,河川水質淨化工法效益分析,2006科技與管理學術研討會,興國管理學院,第387-397頁,台南。
黃明嶔,2008,鹽水港溪重金屬污染分佈及累積行為研究,國立高雄海洋科技大學海洋環境工程系,碩士論文,高雄。
黃騰毅,2005,QUAL2K運用於淡水河系用戶接管最適化配當之研究,國立聯合大學環境工程與安全衛生學系,碩士論文,苗栗。
楊博名,2009,高雄港沉積物中重金屬分佈與累積之研究,國立高雄海洋科技大學海洋環境工程系,碩士論文,高雄。
楊喜男、王漢泉、劉鎮山、王世冠、彭瑞華、郭季華、楊禮源、李俊宏、徐美榕,2004,台灣河川水體、底泥及生物監測分析研究,行政院環保署環境檢驗所,台北。
楊萬發,1999,水及廢水處理化學,茂昌圖書有限公司,台北。
廖俊強,2008,QUAL2K於舊濁水溪水污染防治之應用,逢甲大學水利工程與資源保育學系,碩士論文,台中。
蔡利局、余光昌、何先聰,2007,河川底泥中重金屬與有機鍵結物之相關性研究,2007年河川底泥管理及污染整治技術研討會,188頁,台南。
蔡裕春,2001,台灣地區營造工程物價指數預測之研究-以類神經網路與ARIMA模式,輔仁大學應用統計學研究所,碩士論文,台北。
蘇群仁,2000,不同粒徑底泥顆粒中重金屬分佈特性之研究,國立交通大學環境工程研究所,碩士論文,新竹。
陳琪婷,2003,以二氧化錳催化降解水中氨氮之研究,國立中山大學海洋環境及工程學系,碩士論文,高雄。
劉文御,2001,水產養殖環境學(水質、底質、循環用水、魚蝦病控制),行政院農業委員會水產試驗所專著:001號,29-32頁。
Abumaizar, R.J. and Smith, E.H., 1999. Heavy metal contaminants removal by soilwashing. J. Hazard. Mater., 70, 71-85.
Alloway, B.J., 1990. Heavy Metals in Soils. Chapter 2, John Wiley and Sons, New York.
Ambrose, R.B. and Martin, J.L., 1993. The Water Quality Analysis Simulation Program,WASP5 model documentation. U.S. EPA, Athens, Georgia.
Amin, B., Ismail, A., Arshad, A., Yap, C.K., Kamarudin, M.S., 2009. Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environ. Monit. Assess., 148, 291-305.
Hansen, D.J., Berry, W.J., Boothman, W.S., Pesch, C.E., Mahony, J.D., Di Toro, D.M., Robson, D.L., Ankley, G.T., Ma, D., Yan, Q., 1996. Predicting the toxicity of metal-contaminated field sediments using interstitial concentrations of metals and acid-volatile sulfide normalizations. Environ. Toxicol. Chem., 15, 2080-2094.
Birth, G., 2003. A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Woodcoffe, C.D., Furness, R.A. (Eds), Coastal GIS 2003. Wollongong University Papers in Center for Maritime Policy, 14, Australia.
Bolger, F., Onkal-Atay, D., 2004. The effects of feedback on judgmental interval predictions. Int. J. Forecast., 20, 29-39.
Bonnissel-Gissinger, P., Alnot, M., Ehrhardt, J.J., 1998. Surface oxidation of pyrite as a function of pH. Environ. Sci. Technol., 32, 28-39.
Burdige, D.J., 2001. Dissolved organic matter in Chesapeake Bay sediment pore water. Org. Geochem., 32, 487-505.
Burton, G., Ingersoll, C., 1994. Evaluating the Toxicity of Sediments in the ARCS Assessment Guidance Document. EPA/905-B94/002. Chicago, Illinois.
Calmano, W., Hung J., Förstner, U., 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Wat. Sci. Tch., 28, 223-235.
Casas, J.M., Rosas, H., Solé, M., Lao, C., 2003. Heavy metals and metalloids in sediments from the Llobregat basin, Spain. Environ. Geol., 44, 325-332.
Cassidy, D.P., Irvine, R.L., 1998. Interactions between organic contaminants and soil affecting bioavailability. Bioremediation- Principles and Practices, Technomics Lancaster, Pennsylvania, 259-282.
Cauwenberg, P., Verdonckt, F., Maes, A., 1998. Flotation as a remediation technique for heavily polluted dredgedmaterial. 2. Characterisation of flotated fractions, Sci. Total Environ., 209, 121-131.
Cevik, F., Göksu, M.Z.L., Derici, O.B., Fındık, Ö., 2009. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ. monit. assess., 152, 309-317.
Chapman, P.M., 1989. Current approaches to developing sediment quality criteria. Environ. Toxicol. Chem., 8, 589-599.
Chau, K.W., 2002. Field measurements of SOD and sediment nutriaent fluxes in a land-locked embayment in Hong Kong. Advances in Environmental Research, 6, 135-142.
Chen, C.W., Kao, C.M., Chen, C.F., Dong, C.D., 2007. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66, 1431-1440.
Chlopecka, A., 1996. Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in Southwest Poland. Sci. Total Environ., 188, 71-270.
Clemente, R., Walker, D.J., Bernal, M.P., 2005. Uptake of heavy metals and as by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environ. Pollut., 138, 46-58.
Czupyran, G., Levy, R.D., 1989. In situ immobilization of heavy metal-contaminated soil: section II. Noyes Data Corp., Park Ridge, NJ, USA.
Di Toro, D.M., Mahony, J.D., Hansen, D.J., 1990. Toxicity of cadmium in sediments: the role of acid volatile sulfide, Environ. Toxicol. Chem., 9, 1487-1502.
Di Toro, D.M., Zarba, C.S., Hansen, D.J., Berry, W.J., Swartz, R.C., Cowan, C. E., Pavlou, S.P., Allen, H.E., Thomas, N.A., Paquin, P.R., 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem., 10, 1541-1583.
Eggleton, J., Thomas, K.V., 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int., 30, 973-980.
Fischer, K., Bipp, H.P., Riemschneider, P., Leidmann, P., Bieniek, D., Kettrup, A., 1998. Utilization of biomass residues for the remediation of metal-polluted soils. Environ. Sci. Technol., 32, 2154-2161.
Forstner, U., Ahlf, W., Calmano, W., Kersten, M., 1990. Sediment criteria development. In: Heling D., Rothe P., Forstner U., Stoffers P. (Eds.) Sediment and Environmental Chemisty. Springer, Berlin, 311-338.
Fukue, M., Mulligan, C.N., Sato, Y., Fujikawa, T., 2007. Effect of organic suspended solids and their sedimentation on the surrounding sea area. Environ. Pollut., 149, 70-78.
Garnier, J.M., Ciffroy, P., Lakhdar, B., 2006. Implications of short and long term (30 days) sorption on the desorption kinetic of trace metals (Cd, Zn, Co, Mn, Fe, Ag, Cs) associated with river suspended matter, Sci. Total Environ., 366, 350-360.
Ghrefat, H., Yusuf, N., 2006. Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam. Jordan. Chem., 65, 2114-2121.
Gomez-Parra, A., Forja, J.M., DelValls, T.A., Saenz, I., Riba, I., 2000. Early contamination by heavy metals of the Guadalquivir estuary after the Aznalcollar Mining Spill (SW Spain). Mar. Pollut. Bull., 40, 1115-1123.
Grant, A., Briggs, A.D., 2002. Toxicity of sediments from around a North Sea oil platform: are metals or hydrocarbons responsible for ecological impacts. Mar. Environ. Res., 53, 95-116.
Gundersen, P., Steinnes, E., 2003. Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Res., 37, 307-318.
Hantush, M.M., 2007. Modeling nitrogen-carbon cycling and oxygen consumption in bottom sediment. Adv. water resour., 30, 59-79.
Hayes, R.A., Price, D.M., Ralston, J., Smith, R.W., 1987. The collectorless flotation of sulphide minerals. Miner. Process. Extr. Metall. Rev., 2, 203-234.
Holst, T., Jørgensen, N.O.G., Jørgensen, C., Johansen, A., 2003. Degradation of microcystin in sediments at oxic and anoxic, denitrifying conditions. Water Res., 37, 4748-4760.
Hong, P.K., Cai, X., Cha, Z., 2008. Pressure-assisted chelation extraction of lead from contaminated soil. Environ. Pollut., 10, 1-8.
Jacobs, P.H., Forstner, U., 1999. Concept of subaqueous capping of contaminated sediments with active barrier systems (ABS) using natural and modified zeolites. Water Res., 33, 2083-2087.
Kartal, S., Aydın, Z., Tokalıoğlu, S., 2006. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. J. Hazard. Mater., 132, 80-89.
Kelderman, P., Osman, A.A., 2007. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands). Water Res., 41, 4251-4261.
Kraus, U., Wiegand, J., 2006. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Sci. Total Environ., 367, 855-871.
Kyllönen, H., Pirkonen, P., Hintikka, V., Parvinen, P., Grönroos, A., Sekki, H., 2004. Ultrasonically aided mineral processing technique for remediation of soil contaminated by heavy metals. Ultrasonics Sonochemistry, 11, 211-216.
Lawrence, M., O’Connor, M., 2005. Judgmental forecasting in the presence of loss functions. Int. J. Forecast., 21, 3-14.
Leong, L.S., Tanner, P.A., 1999. Comparison of methods for determination of organic carbon in marine sediment. Mar. Pollut. Bull., 38, 875-879.
Liaghati, T., Preda, M., Cox, M., 2003. Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek Catchment, southeast Queensland, Australia. Environ. Int., 29, 935-948.
Lim, T.T., Tay, J.H., Wang, J.Y., 2004. Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. J. Environ. Eng., 130, 59-66.
Ling, T.Y., Ng, C.S., Lee, N., Buda, D., 2009. Oxygen demand of the sediment from the semariang Batu River, Malaysia. World Appl. Sci. J., 7, 440-447.
Liu, E., Shen, J., Yang, L., Zhang, E., Meng, X., Wang, J., 2010. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China. Environ. Monit. Assess., 161, 217-227.
Lo, E.K., Fung, Y.S., 1992. Heavy metal pollution profiles of dated sediments cores from Hebe Haven, Hongkong. Water Res., 26, 1605-1619.
Lombi, E., Zhao, F.J., Zhang, G., Sun, B., Fitz, W., Zhang, H., McGrath, S.P., 2002. In situ fixation of metals in soils using bauxite residue: chemical assessment, Environ. Pollut., 118, 435-443.
Long, E.R., Morgan, L.G., 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52, National Oceanic and Atmospheric Administration, Seattle, WA.
Lores, E.M., Pennock, J.R., 1998. The effect of salinity on binding of Cd, Cr, Cu, and Zn to dissolved organic matter. Chemosphere, 37, 861-874.
Lung, W.S. Water Quality Modeling for Wasteload Allocateions and TMDLs. John Wiley and Sons, Inc. New York.
Lyman, W.J., Glazer, A.E., Ong, J.H., Coons, S.F., 1987. An overview of sediment quality in the United States. EPA-905/9-88-002. Washington, DC; U.S. EPA.
MacDonald, D.D., Ingersoll, C.G., Berger, T.A., 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystem. Arch. Environ. Contam. Toxicol., 39, 20-31.
Martin, J.L., 2005. Supplement to Water Analysis Simulation Program (WASP) User Documentation version 7. Ph.D., P.E., Mississippi State University.
Martin, J.M., Meybeck, M., 1979. Elemental mass-balance of material carried by major world rivers. Mar. Chem., 7, 73-206.
Martinez, C.E., 2000. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut., 107, 153-158.
Martínez-Lladó, X., Gibert, O., Martı′, V., Dı′ez, S., Romo, J., Bayona, J.M., de. Pablo, J., 2007. Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities. Environ. Pollut., 149, 104-113.
Matis, K.A., 1995. Flotation Science and Engineering. Marcel Dekker, New York, USA, 558.
Meagher, R.B., 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol., 3, 153-162.
Meegoda, J.N., Perera, R., 2001. Ultrasound to decontaminate heavy metals in dredged sediments. J. Hazard. Mater., 85, 73-89.
Muller, G., 1979. Schwermetalle in den sedimenten des RheinsdVernderungenseitt 1971. Umschan 79, 778-783.
Mulligan, C.N., Yong, R.N., Gibbs, B.F., 2001. An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mater., 85, 145-163.
Olivares-Rieumont, S., Rosa, D. De la, Lima, L., Graham, D.W., Alessandro, K.D., Borroto, J., Martínez, F., Sánchez, J., 2005. Assessment of heavy metal levels in Almendares River sediments-Havana City, Cuba. Water Res., 39, 3945-3953.
Ortega, L.M., Lebrun, R., Blais, J.F., Hauslerd, R., Drogui, P., 2008. Effectiveness of soilwashing, nanofiltration and electrochemical treatment for the recovery of metal ions coming from a contaminated soil. Water Res., 42, 1943-1952.
Otubu, J.E., Hunter, J.V., Francisco, K.L., Uchrin, C.G., 2006. Temperature effects on tubificid worms and their relation to sediment oxygen demand. J. Environ. Sci. Health. Part A, 41, 1607-1613.
Pekey, H., Karakas, D., Ayberk, S., Tolun, L., Bakoglu, M., 2004. Ecological risk assessment using trace elements from surface sediments of Ízmit Bay (Northeastern Marmara Sea) Turkey. Mar. Pollut. Bull., 48, 946-953.
Peng, J.F., Song, Y.H., Yuan, P., Cui, X.Y., Qiu, G.L., 2009. The remediation of heavy metals contaminated sediment. J. Hazard. Mater., 161, 633-640.
Peters, R.W., 1999. Chelant extraction of heavy metals from contaminated soils. J. Hazard. Mater., 66, 151-210.
Rafael, C., Almela, C.M., Pilar, B., 2006. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ. Pollut., 143, 397-406.
Raicevic, S., Kaludjerovic-Radoicic, T., Zouboulis, A.I., 2005. In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. J. Hazard. Mater., 117, 41-53.
Raicevic, S., Wright, J.V., Veljkovic, V., Conca, J.L., 2006. Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium. Sci. Total Environ., 355, 13-24.
Rauret, G., 1998. Extraction procedure for the determination of heavy metals in contaminated soil and sediment. Talanta., 46, 449-455.
Reddy, K.R., Urbanek, A., Khodadoust, A.P., 2006. Electroosmotic dewatering of dredged sediments: Bench-scale investigation. J. Environ. Mmanage., 78, 200-208.
Reimann, C., de Caritat, P., 2005. Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Sci. Total Environ., 337, 91-107.
Sekaly, A.L.R., Mandal, R., Hassan, N.M., Murimboh, J., Chakrabarti, C.L., Back, M.H., Grégoire, D.C., Schroeder, W.H., 1999. Effect of metal/fulvic acid mole ratios on the binding of Ni(II), Pb(II), Cu(II), Cd(II), and Al(III) by twowell-characterized fulvic acids in aqueous model solutions. Anal. Chim. Acta., 402, 211-221.
Shrestha, R., Fischer, R., Rahner, D., 2003. Behavior of cadmium, lead and zinc at the sediment–water interface by electrochemically initiated processes, Colloids Surf. A: Physicochem. Eng. Aspects., 222, 261-271.
Spencer, M.S,. Schmeltzer, J.S., Kreamer, D.K., 1996. Sorption of benzene and trichloroethylene (TCE) on a desert soil: Effects of moisture and organic matter. Chemosphere, 33, 961-980.
Suresh, B., Ravishankar, G.A., 2004. Phytoremediation-a novel and promising approach for environmental clean-up. Crit. Rev. Biotechnol., 24, 97-124.
Trannum, H.C., Olsgard, F., Skei, J.M.; Indrehus, J., Øverås, S., Eriksen, J., 2004. Effects of copper, cadmium and contaminated harbour sediments on recolonisation of soft-bottom communities. J. Exp. Mar. Biol. Ecol., 310, 87-114.
Tsivoglou, E.C., Neal, L.A., 1976. Tracer measurements of reaeration:Ⅲ. Predicting the reaeration capacity of inland stream. J. Water Pollution Contr. Fed., 48, 2669-2689.
U.S. EPA, 1998. EPA’s Contaminated Sediment Management Strategy. U.S. Environmental Protection Agency, Office of Water, Washington, DC., EPA-823-R-98-001.
U.S. EPA, 2004. Updated Report on the incidence and severity of sediment contamination in surface waters of the United States, National Sediment Quality Survey. U.S. Environmental Protection Agency, Office of Water, Washington, DC. EPA-823-R-04-007.
U.S. EPA, 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response OSWER., EPA-540-R-05-012.
Valdés, J., Vargas, G., Sifeddine, A., Ortlieb, L., Guiñez, M., 2005. Distribution and enrichment evaluationof heavy metals in Mejillones Bay (23◦S), Northern Chile: Geochemical and statistical approach. Mar. Pollut. Bull., 50, 1558-1568.
Vale′rie, C., Rudy, S., Jiska, V., 2004. Assessment of acid neutralizing capacity and potential mobilization of trace metals from land-disposed dredged sediments. Sci. Total Environ. 333, 233-247.
Walling, D.E., 2005. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ., 344, 159-184.
Wedepohl, K.H., 1991. The composition of the upper earth’s crust and the natural cycles of selected metals in natural raw materials, natural resources, in: E. Merian (Ed.), Metals and their Compounds in Environment: Occurrence, Analysis and Biological Relevance, VCH, New York, 3-17.
Whiteley, J.D., Pearce, N.J.G., 2003. Metal distribution during diagenesis in the contaminated sediments of Dulas Bay, Anglesey, N. Wales, UK. Appl. Geochem., 18, 901-913.
Yang, C.P., Kuo, J.T., Lung, W.S., Lai, J.S., Wu, J.T., 2007. Water quality and ecosystem modeling of tidal wetland. J. Envir. Engrg., 33, 711-721.
Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H., Yu, L., 2009. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environ. Pollut., 157, 1533-1543.
Zheng, N., Wang, Q., Liang, Z., Zheng, D., 2008. Characterization of heavy metal concentration in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ. Pollut. 154, 135-142.
Zoumis, T., Schmidt, A., Grigorova, L., Calmano, W., 2001. Contaminants in sediments: Remobilisation and demobilization. Sci. Total Environ., 266, 195-202.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.100.204
論文開放下載的時間是 校外不公開

Your IP address is 3.133.100.204
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code