論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
虛擬實境之多軸運動平台應用於飛行模擬訓練 Design of virtual reality multi-axis somatosensory motion platform for flight simulation training |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
94 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-08-25 |
繳交日期 Date of Submission |
2020-09-24 |
關鍵字 Keywords |
飛行模擬訓練、運動追蹤感 應器、可旋轉多軸運動平台、虛擬實境、運動軌跡 Rotatable multi-axis motion platform, Virtual reality, Flight simulation training, Motion tracking sensor, Motion trajectory |
||
統計 Statistics |
本論文已被瀏覽 180 次,被下載 2 次 The thesis/dissertation has been browsed 180 times, has been downloaded 2 times. |
中文摘要 |
本研究為開發虛擬實境(Virtual reality, VR)結合可旋轉之多軸運動平台應用於飛行 模擬訓練系統,虛擬實境技術為近年來之新穎科技之一,其優勢為可根據需求進行 影像設計,故應用之領域相當廣泛,主要有媒體娛樂、教育訓練、醫療輔具、駕駛 模擬以及軍事演練等,其中駕駛訓練通常為利用相對應的模擬器來增加駕駛員之 操作成熟度以避免實際訓練失誤之風險。傳統式訓練模擬器之影像通常為使用一 般顯示器且其所搭配之模擬器可動靈活度較低,學員訓練真實度下降,導致訓練效 果不佳,因此本研究將開發可旋轉之多軸運動平台,透過於平台中央設計單一可 360 度旋轉座椅平台,並利用諧波曲線結合逆向運動學求出運動軌跡與馬達輸出對 應角度,再經由機構設計軟體Solidworks 進行結構設計與應力分析,最後將虛擬 環境中之飛機姿態作為平台運動軌跡進行模擬訓練。虛擬實境影像則以HTC 公司 開發之虛擬影像設備Vive Pro 為設備基礎,結合Unity 3D 軟體進行虛擬環境建構, 為了提升虛擬影像與飛行員訓練真實度,本研究將飛機於實際環境中之基本飛行 運動原理、實際飛機推進力以及相關空間物理系統(重力及阻力)編譯至虛擬環境中, 並將外部飛行操作組(飛行搖桿、飛行油門及飛行腳舵)之訊號透過Virtual Studio C # 軟體設計出具有高互動功能虛擬飛機操控程式,最後於多軸運動平台之上平台 中心位置安裝高性能9 軸運動追蹤感應器(MPU9250)來取得運動平台之角度與加 速度數據,並以滑動加權法對陀螺儀做一次濾波,再將濾波後之數據結合加速規進 行卡爾曼濾波演算,使整體量測誤差百分比降低90%,最後將量測結果與運動模 擬結果進行比對後,可測得平台俯仰運動馬達輸出誤差為5.5%,翻滾運動馬達輸 出誤差為7.5%,平台俯仰運動軌跡角度平均誤差為0.4 ˚,平台翻滾運動軌跡角度 平均誤差為0.29 ˚,故運動學運算軌跡之準確性可達90%,而平台運動性能之垂直 極限G 力達0.34 G、翻滾極限G 力達0.73 G、俯仰極限G 力達0.51 G、及旋轉極 限G 力達0.5 G,足以提供使用者足夠的體感回饋力道,增加訓練真實度。本研究 虛擬實境可旋轉多軸運動平台應用於飛行模擬訓練系統,可依需求自行增設各項 地形與環境於虛擬影像,加強飛行員之駕駛成熟度與應變能力,還可以避免真實訓 練環境之危險,且使用三自由度之運動平台還能提供低成本與高負載之優勢,使得 訓練系統更能普及於各種領域中。 |
Abstract |
The purpose of this paper was to develop virtual reality (VR) combined with a rotatable multi-axis motion platform applied to flight simulation. In recent years, virtual reality is one of the emerging technologies. The application fields were quite extensive including media entertainment, education and training, medical aids, driving simulation, and military exercises, etc. The driving training usually used the corresponding simulator to increase the driver's operational maturity to avoid the risk of actual training. The image of a traditional training simulator was a monitor so that the simulator was equipped with a low real and immersion. It would result that the authenticity was reduced and in poor training. This paper would develop a rotatable multi-axis motion platform by designing a single 360-degree rotating seat in the center of the platform. The angle of the trajectory and motor output was calculated by harmonic curves combined with inverse kinematics. Mechanical design and stress analysis were used the structural design software Solidworks. The virtual reality image was based on the virtual image device Vive Pro developed by HTC and was combined with Unity 3D software to construct the virtual environment to improve the reality of training. The aircraft design would contain the basic flight movement principle that is compiled into the virtual environment. The signals of the external flight operation group (flight stick, flight throttle, and flight rudder) were designed a high interactive function control program by Virtual Studio C #. Finally, a high-performance 9-axis motion tracking sensor (MPU9250) was installed on the center of the platform to obtain the angle and acceleration data of the motion platform. The gyroscope was filtered once by the sliding weighting method and was combined with the accelerometer to perform Kalman filter calculation. The filter could reduce the overall measurement error percentage by 90%. After comparing the measurement results and the motion simulation results, the motor output angle error of the platform was 5.5% at pitch motion, the motor output angle error of the platform was 5.5% at roll motion. The platform pitching motion trajectory angle average error is 0.4 ˚, and the platform rolling motion trajectory angle error is 0.29 ˚. According to compare results, the accuracy of the kinematic operation track could reach 90%. The vertical limit G-force of the platform motion performance is 0.34 G, the roll limit G-force is 0.73 G, and the pitch limit G-force is 0.51 G. And the rotation limit G-force reaches 0.5 G, which is enough to provide the user with enough somatosensory feedback force and increase the training reality. In this paper, the rotatable multi-axis motion platform was applied to the flight simulation training system. This system adds various terrains and environments to the virtual image. It was not only to strengthen the pilot's driving maturity and adaptability but also to avoid the danger of the real training environment. The three-degree-of-freedom sports platform provided the advantages of low cost and high load, making the system more popular in the various fields. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 vii 致謝 ii 摘要 iii Abstract iv 圖目錄 x 表目錄 xiii 論文架構 xv 第一章 緒論 1 1.1 前言 1 1.2 研究背景 1 1.3 研究目的 3 第二章 文獻回顧與理論基礎 4 2.1 多軸運動平台 4 2.1.1 連桿機構原理 5 2.1.2 皮帶傳動機構原理 6 2.2 虛擬現實技術(Virtual reality, VR) 6 2.2.1 虛擬實境設備原理 8 2.2.2 眼球立體視覺成像 9 2.2.3 飛機飛行原理 10 2.2.4 航空重力(Gravitational force, G-force) 10 2.2.5 運動追蹤感應器 11 2.2.6 虛擬實境結合運動平台 11 第三章 研究方法與步驟 14 3.1 研究流程 14 3.2 多軸運動平台 16 3.2.1 多軸運動平台規格 16 3.2.2 多軸運動平台自由度 17 3.2.3 多軸運動平台運動坐標系 18 3.2.4 多軸運動平台運動軌跡分析 20 3.2.5 多軸運動平台運動學 23 3.2.6 多軸運動平台機構設計 26 3.2.7 多軸運動平台機構應力分析 28 3.3 虛擬實境飛行模擬系統 29 3.3.1 虛擬實境實驗設備 29 3.3.2 虛擬實境設計軟體 31 3.3.3 虛擬影像設計方法流程 32 3.3.4 地形建立 33 3.3.5 環境規劃 34 3.3.6 模型設計 36 3.3.7 互動設置 37 3.4 系統控制架構 39 3.5 系統監測與調整 40 3.5.1 九軸運動感測器濾波校正 41 第四章 結果與討論 44 4.1 多軸運動平台 44 4.1.1 多軸運動平台曲柄連桿機構 44 4.1.2 多軸運動平台中央機構 45 4.1.3 運動軌跡結果分析與實際驗證 46 4.1.4 多軸運動平台機構應力分析 51 4.2 虛擬實境場景建立 53 4.2.1 虛擬實境飛行地形場景 53 4.2.2 虛擬實境飛機模型與物理系統 53 4.2.3 虛擬實境飛機結合頭盔顯示器 54 4.2.4 虛擬實境飛機模擬系統結合多軸運動平台 55 4.2.5 多軸運動平台軌跡驗證 60 4.2.6 多軸運動平台運動性能測試 67 4.2.7 系統即時監控智慧軟體 68 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 72 |
參考文獻 References |
[1] Thomas Oliver, “New Virtual Reality Association GVRA Created To Promote And Police VR, " Vrzone, Recent News, 2020. [2] V. Gough, "Universal tire test machine," Proc. FISITA 9th Int. Technical Congr., London, pp. 117-137, 1962. [3] D. Stewart, "A platform with six degrees of freedom," Proceedings of the institution of mechanical engineers, vol. 180, pp. 371-386, 1965. [4] K. H. Hunt, Kinematic geometry of mechanisms vol. 7: Oxford University Press, USA, 1978. [5] L. C. Lin and M. U. Tsay, "Modeling and control of micro positioning systems using Stewart platforms," Journal of Robotic Systems, vol. 17, pp. 17-52, 2000. [6] J. Pieper, "Design of a Stewart Platform for General Machining Using Magnetic Bearings," The American Society for Precision Engineering, 2004. [7] K. Hulme and A. Pancotti, "Development of a Virtual DF Motion Platform for Simulation and Rapid Synthesis," In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, pp. 1851, 2004. [8] S. Ammanagi, V. Poornima, A. Sera, and R. Sunder, "Development of a digitally-controlled three-axis earthquake shake table," Current Science, pp. 190-203, 2006. [9] Y. Li and Q. Xu, "Kinematic analysis and design of a new 3-DF translational parallel manipulator," Journal of Mechanical Design, vol. 128, pp. 729-737, 2006. [10] S. A. Joshi and L.-W. Tsai, "The Kinematics of a Class of 3-Dof, 4-legged Parallel Manipulators," Journal of mechanical design, vol. 125, pp. 52-60, 2003. [11] T. Itul and D. Pisla, "Dynamics of a 3-DOF parallel mechanism used for orientation applications," In IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 398-403, 2008. [12] C. M. Gosselin and J.-F. Hamel, "The agile eye: a high-performance three-degree-of-freedom camera-orienting device," in Proceeding of IEEE International Conference on Robotics and Automation, pp. 781-786, 1994. [13] H. Asada and J. Granito, "Kinematic and static characterization of wrist joints and their optimal design," in IEEE International Conference on Robotics and Automation. Proceedings, pp. 244-250, 1985. [14] C.-C. Kung, "Kinematic and Dynamic Analyses of a 3DoF Crank Motion Platform," National Sun Yat-Sen University, Kaohsiung, Taiwan, 2017. [15] Fichter, E.F., "A Stewart Platform-Based Manipulator: General Theory and Practical Construction," Int. J. Robotics Research, vol. 5, pp. 157-186, 1986. [16] Merlet, J.P., "Designing a Parallel Manipulator for a Specific Workspace," The International Journal of Robotics Research, vol. 16, pp. 545-556, 1985. [17] Z. Huang, W. S. Tao, F. Fang, "Study on the kinematic characteristics of 3 DOF in-parallel actuated platform mechanisms," Mech. Mach. Theory, vol. 31, pp. 999-1007, 1996. [18] Lung-Wen Tsai, Gregory C. Walsh, and Richard E. Stamper, "Kinematics of a Novel Three DOF Translational Platform," International Conference on Robotics and Automation Minneapolis, Minnesota, 1996. [19] Pimentel, K., Teixeira, K., "Virtual reality," NY: McGraw-Hill, ISBN 978-0-8306-4065-2, 1993. [20] P. Bourke, "Calculating Stereo Pairs," Retrieved December, vol. 12, pp. 2006, 1999. [21] Åstro̊ m, K.j., Klein, R.E., Lennartsson, A., "Bicycle Dynamics and Control," IEEE Control Systems Magazine 25 (4), pp. 26–47, 2005. [22] Krueger, M. K., "Artificial reality II. Boston: Addison-Wesley Professional," 1991. [23] Daechul Park, Kyungtae Kim, Cheonhee Lee, Jungyoung Son, and Yongbeom Lee, "Lenticular stereoscopic imaging and displaying techniques with no special glasses," International Conference on Image Processing, vol.3, pp. 137-140, 1995. [24] 廖德潭,「雙照相機立體成像系統的建模與分析」,國立成功大學機械工程學系學位論文,2003年。 [25] Sandin, Daniel J., et al., "The VarrierTM autostereoscopic virtual reality display," ACM SIGGRAPH 2005 Papers, pp. 894-903, 2005. [26] Howard, Ian P., and Brian J. Rogers, "Seeing in depth: Depth perception," University of Toronto Press, vol. 2, 2002. [27] Braunstein, Myron L., "Depth perception through motion," Academic Press, 2014. [28] Parker, Andrew J, "Binocular depth perception and the cerebral cortex," Nature Reviews Neuroscience 8.5, pp. 79-391, 2007. [29] Ogle, Kenneth N., "Researches in binocular vision," 1950. [30] Howard, Ian P., and Brian J. Rogers., "Binocular vision and stereopsis," Oxford University Press, USA, 1995. [31] Luneburg, Rudolf Karl., "Mathematical analysis of binocular vision," 1947. [32] Charles Dollfus, Henry Beaubois, Camille Rougeron., " L'homme, l'air, et l'espace, " pp. 96, 1965. [33] Allerton, David., "Principles of flight simulation, " John Wiley & Sons, 2009. [34] Swatton, Peter J. "Principles of flight for pilots, " John Wiley & Sons, pp. 42, 2011. [35] Cook, Michael V. "Flight dynamics principles: a linear systems approach to aircraft stability and control, " Butterworth-Heinemann, 2012. [36] RE Maine, KW Iliff, "Application of parameter estimation to aircraft stability and control: The output-error approach," 1986. [37] S Kang, et al., "Measuring the cumulative effect of G force on aviator neck pain. Aviation, space, and environmental medicine, " pp. 1042-1048, 2011. [38] Little, B. B., C. H. Rigsby, and L. R. Little, "Pilot and astronaut offspring: possible G-force effects on human sex ratio." Aviation, space, and environmental medicine 58.7, pp. 707-709, 1987. [39] Sachdev, W. C. V. S., et al., "Heat Release Characteristics of the basic materials used for flying clothing." Ind J Aerospace Med 48.1, pp. 54, 2004. [40] Nunneley, S. A., et al., "Thermal study of anti-G ensembles aboard F-16 aircraft in hot weather." Aviation, space, and environmental medicine 66.4, pp. 309-312, 1995. [41] Hopman, M. T., B. E. R. E. N. D. Oeseburg, and R. A. Binkhorst, "The effect of an anti-G suit on cardiovascular responses to exercise in persons with paraplegia." Medicine and science in sports and exercise 24.9, pp. 984-990, 1992. [42] Rysdyk, Rolf T., and Anthony J. Calise, "Adaptive model inversion flight control for tilt-rotor aircraft." Journal of guidance, control, and dynamics 22.3, pp. 402-407, 1999. [43] Ning, Yuebin, Yan Loke, and Graham McKinnon, "Fabrication and characterization of high g-force, silicon piezoresistive accelerometers," Sensors and Actuators A: Physical 48.1, pp. 55-61, 1995. [44] Fang, Bin, et al., "A novel data glove using inertial and magnetic sensors for motion capture and robotic arm-hand teleoperation," Industrial Robot: An International Journal, 2017. [45] Treffers, Charlotte, and Luc van Wietmarschen, "Position and orientation determination of a probe with use of the IMU MPU9250 and a ATmega328 microcontroller," 2016. [46] Zhao, Q. Q., et al., "An improved attitude estimation algorithm based on MPU9250 for quadrotor," ACMIE, 2018. [47] Prakash, Mudita, "Investigation into accurate location and orientation of IMU for sensor scanning application," 2019. [48] P. Bourke, "Calculating Stereo Pairs, " Retrieved December, Vol. 12, pp. 2006, 1999. [49] Åstro̊m, K.j., Klein, R.E., Lennartsson, A., “Bicycle Dynamics and Control,” IEEE Control Systems Magazine 25 (4), pp. 26–47, 2005. [50] Kiusalaas, J., “Numerical Methods in Engineering with MATLAB,” Cambridge University Press, 2005. [51] P. Bourke, “Calculating Stereo Pairs,” Retrieved December, Vol. 12, pp. 2006, 1999. [52] Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, et al., “Virtual reality-augmented rehabilitation for patients following stroke,” Phys Ther; 82: pp.898–915, 2002 [53] Barbeau H, Visintin M., “Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects,” Arch Phys Med Rehabil; 84: pp.1458–65, 2003. [54] L.C. Shen, C.W. Chien, H.C. Cheng, C.T. Lin, “Development of three-dimensional chip stacking technology using a clamped through-silicon via interconnection,” Microelectronics Reliability, vol. 50, no. 4, pp. 489-497, 2010. [55] Lam YS, Man DWK, Tam SF, Weiss PL., “Virtual reality training for stroke rehabilitation,” Neuro Rehabilitation, 21: pp.245–53, 2006. [56] Woon-Sung Lee, Jung-Ha Kim, Jun-hee Cho, "A Drive Simulation as a Virtual Reality Tool," International Conference On Robotics & Automation Leuven, Belgium, 1998. [57] Antonin Petru, Petr Francis, "Using Virtual Reality for Sensory Illusion Training," International Conference on Military Technologies, 2017. [58] Rekdalsbakken Webjørn, "The Use Of Artificial Intelligence In Controlling A 6Dof Motion Platform," Proc. of ECMS 21th European Conference on Modelling and Simulation, 2007. [59] Dariusz Bogusz, "Spatial Disorientation Simulator," Safety & Defense, vol. 4. pp10-16, 2018. [60] César Villacís, Walter Fuertes, Luis Escobar, Fabián Romero, Santiago Chamorro, "A New Real-Time Flight Simulator for Military Training Using Mechatronics and Cyber-Physical System Methods," Military Engineering. IntechOpen, 2019. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |