Responsive image
博碩士論文 etd-0901110-171448 詳細資訊
Title page for etd-0901110-171448
論文名稱
Title
台灣海域鼬魚科發音構造之研究
Study of the sonic apparatus of ophidiid fishes from Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-08-17
繳交日期
Date of Submission
2010-09-01
關鍵字
Keywords
中間發音肌、蛋白質體學、發音結構模式、鼬魚科、聚類分析、組織學、多向度量尺法分析、腹側發音肌
intermediate sonic muscle, proteomic, histological, non-metric multidimensional scaling analysis, ventral sonic muscle, ophidiidae, sonic structural patterns, cluster analysis
統計
Statistics
本論文已被瀏覽 5759 次,被下載 10116
The thesis/dissertation has been browsed 5759 times, has been downloaded 10116 times.
中文摘要
鼬魚科主要為底棲性魚類,廣泛分布於世界各海域,自海平面至水深八千公尺皆有記錄。前人研究中已詳細描述鼬魚科的三種發音結構模式,然而目前仍無法確認不同發音系統之形態特徵是屬於亞科間普遍之祖徵或為其特殊離徵構造;此外,雖已有文獻記錄鼬魚科之發音構造及機制,但是其鰾前發音肌特性仍待釐清。因此,本研究針對台灣海域鼬魚科的三個亞科進行發音系統形態特徵描述,並彙整前人研究以探討各發音系統和鼬魚三亞科間之關係。此外,並以棘鼬魚作為代表魚種進行鰾前肌肉之組織學及蛋白質體學分析,以了解其發音肌之特性。
結果顯示本研究中的13種鼬魚可定義成五種發音結構模式,經由,聚類分析及多向度量尺法分析後,發現在不同亞科魚類擁有不同的發音模式;將此結果與系統分類共同探討,顯示三亞科間的發音系統形態具有共同衍徵之關係,因此推測三亞科魚類的共同祖先亦具備發音系統;研究中並將環境因子加入討論,發現三亞科魚類的發音系統變異亦與棲息深度相關。肌肉特性方面,棘鼬魚鰾前發音肌之研究顯示腹側發音肌纖維橫切面具有環狀肌原纖維及中間核心,此特徵與大多數的魚類發音肌纖維橫切面形態一致,且雄魚腹側發音肌重量大於雌魚,而肌纖維面積則小於雌魚,蛋白電泳分析結果亦顯示腹側發音肌在快速且長時收縮的相關蛋白表現量較高。此外,棘鼬魚的雌魚中間發音肌較重,然而在中間發音肌的纖維橫切面與白肌相似且雌雄之肌纖維面積並無差異;蛋白電泳分析結果顯示中間發音肌在快速收縮的相關蛋白表現量比腹側發音肌高,並且能量代謝的相關蛋白表現量介於腹側發音肌及體側白肌之間。
雖然鼬魚亞目的系統發育研究仍缺乏,較難以將本研究結果與演化進行討論,但是在本研究所觀察之鼬魚發音系統變異,相信在接續探討鼬魚發音系統多型性與其演化間的關係將會有所幫助。此外,將棘鼬魚鰾前肌肉進行組織學及蛋白質體分析後,推測雄魚之腹側發音肌在連續快速收縮過程較可抵抗疲勞,並且以雄魚的縮能力與能量交替量能力較高;而中間發音肌在雌魚中間發音肌的收縮能力較高,運動過程則可能偏向於瞬間高速收縮且容易疲勞。對於棘鼬魚鰾前發音肌進行組織學及蛋白質體學分析之結果,相信在未來探討鼬魚科鰾前發音肌的實際功能時,將會有所幫助。
Abstract
Ophidiidae are major benthopelagic fishes with wide distribution and depth range. Three types of sonic structural patterns have been described in some studied ophidiid fishes, however, the significance of the different types of the sonic apparatus, and the distribution in the subfamilies remain unclear. In addition, although the sonic apparatus and the sonic mechanisms of the high frequency sounds produced by cusk-eels has been explained, the characteristics of extrinsic swimbladder sonic muscle is still unknown. In this study, I investigated three ophidiid subfamilies from Taiwan and reviewed the published data to study the morphological traits of their sonic apparatus. Inaddition, Hoplobrotula armata were related to study the proteomic characterization of the extrinsic swimbladder sonic muscle.
Results indicate that the 13 ophidiid species in this study could be grouped into five sonic structural patterns, and three subfamilies could be separated accordingly. Furthermore, because the sister group of the family Ophidiidae-carapidae is soniferous, I suggest that the common ancestor of the three ophidiid subfamilies should also be soniferous. Comparisons made in regarded to environmental factors indicate that diversity of sonic apparatus in three ophidiids subfamiliesis depth dependent.
The extrinsic swimbladder sonic muscles could be separated into ventral sonic muscle and intermediate sonic muscle. The histological cross-sections of the ventral sonic muscle fibers show peripheral ring myofibrillar region and central core and they are similar with the sonic muscle. Ventral muscle weights were higher in males than females, but the muscle fibers are smaller in males. Protein values of ventral sonic muscles showed high expression in fast and long duration constructional proteins, and males were higher in protein expression than females. Intermediate sonic muscles, on the other hand, were larger in females than males. The cross-sections of muscle fibers were similar to the white muscle. Expression in the fast constructional related protein in the intermediate sonic muscle was higher than ventral sonic muscles, and the metabolically related protein was lower than ventral sonic muscles.
The phylogeny of ophidiiform fishes is not clear at present; the sonic-apparatus diversity in ophidiid fishes observed in this study becomes useful to reveal the relationship phylogenetic of ophidiids fishes. Regard the physiology of sound production, I suggest that the larger ventral sonic muscle in males are be provides a better constructional ability, and their smaller fibers are adaptative for energy metabolism regarded for continuous fast constraction and fatigue resistance. The longer intermediate sonic muscle in females is a better constructional ability than male. In intermediate sonic muscle were be fast constructional related protein, higher in expression than the ventral sonic muscles, the metabolic related protein was lower than the ventral sonic muscles. These results suggest that the intermediate sonic muscle has a hight constructional ability but has a disventage of being easily fatigue.
目次 Table of Contents
謝辭 i
總目錄 ii
表目錄 iii
圖目錄 iv
附錄 vi
摘要 vii
Abstract ix
一、前言 1
1.1鼬魚科分類及分布概述 1
1.2 鼬魚科發音系統 1
1.3 發音肌之特性 4
1.4肌肉的能量來源 5
1.5研究目標 6
二、材料方法 7
2.1 樣本採集 7
2.2 形態特徵調查 7
2.3鼬魚類鰾前肌肉特性 8
三、結果 13
3.1 鼬魚亞科發音系統之變異 13
3.2鰾前肌肉特性研究 15
四、討論 19
4.1鼬魚亞科發音系統之變異 19
4.2 鰾前肌肉特性研究 21
五、結論 28
5.1鼬魚科亞科與發音系統之關係 28
5.2棘鼬魚鰾前肌肉之特性 28
六、參考文獻 29
表 、 33
圖 、 41
附錄、 65
個人履歷 69
參考文獻 References
林佑穗、袁宗凡。2003。新編蓋統醫用生理學 下冊。合記圖書出版社 855-876。
邵廣昭。1998。海洋生態學。明文出版社。台灣。
高銘都、黃義祿。1988。病理組織切片技術-切片標本製作及各種染色法。南山堂出版社。台灣。
Appelt, D., V. Shao, and C. Franzini-Amstrong. 1991. Quantitation of Ca ATPase, feet and mitochondria in super fast muscle fibers from the toadfish, Opsanus tau. J. Muscle Res. Cell Motil 12: 543-552.
Berkelman, T., and T. Stenstedt. 2001. 2-D electrophoresis using immobilized pH gradients principles and methods. Amersham Biosciences.
Briggs, J. C. 1974. Marine Zoogeography. McGraw-Hill, New York. 475.
Carter, H. J., and J. A. Musick. 1985. Sexual Dimorphism in the Deep-Sea Fish Barathrodemus-Manatinus (Ophidiidae). Copeia 1985(1): 69-73.
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117-143.
Clarke, KR., and R. N. Gorley. 2001. PRIMER v5: User manual/tutorial, PRIMER-E, Plymouth UK.
Cohen, C., and D. A. D. Parry. 1998. A conserved C-terminal assembly region in paramyosin and myosin rods. Journal of Structural Biology 122(1-2): 180-187.
Connaughton, M. A., M. H. Taylor, and M. L. Fine. 2000. Effects of fish size and temperature on weakfish disturbance calls: Implications for the mechanism of sound generation. Journal of Experimental Biology 203(9): 1503-1512.
Connaughton, M. A., M. L. Fine, and M. H. Taylor. 2002. Weakfish sonic muscle: influence of size, temperature and season. Journal of Experimental Biology 205(15): 2183-2188.
Courtenay.W. R. 1971. Sexual Dimorphism of Sound Producing Mechanism of Striped Cusk-Eel, Rissola-Marginata (Pisces- Ophidiidae). Copeia (2): 259-268.
Currie, S., C. D. Moyes, and B. L. Tufts. 2000. The effects of heat shock and acclimation temperature on hsp70 and hsp30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. Journal of Fish Biology 56(2): 398-408.
Davenport, J., and M. D. J. Sayer. 1993. Physiological Determinants of Distribution in Fish. Journal of Fish Biology 43: 121-145.
Eichelberg, H. 1976. Fine-structure of drum muscles of tigerfish, Therapon Jarbua, as compared with trunk musculature. Cell and Tissue Research 174(4): 453-463.
Evans, R. R. 1973. Swimbladder and associated structures in western atlantic sea robins (Triglidae). Copeia (2): 315-321.
Feher, J. J., T. D. Waybright, and M. L. Fine. 1998. Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle. Journal of Muscle Research and Cell Motility 19(6): 661-674.
Fine, M. L., K. R. Pennypacker, K. A. Drummond, and C. B. Blem. 1986. Concentration and location of metabolic substrates in fast toadfish sonic muscle. Copeia (1): 910-915.
Fine, M. L., N. M. Burns, and T. M. Harris 1990. Ontogeny and Sexual Dimorphism of Sonic Muscle in the Oyster Toadfish. Canadian Journal of Zoology-Revue Canadienne De Zoologie 68(7): 1374-1381.
Fine, M. L., B. Bernard, and T. M. Harris. 1993. Functional-Morphology of Toadfish Sonic Muscle-Fibers - Relationship to Possible Fiber Division. Canadian Journal of Zoology-Revue Canadienne De Zoologie 71(11): 2262-2274.
Fine, M. L., H. Lin, B. B. Nguyen, R. A. Rountree, T. M. Cameron, and E. Parmentier. 2007. Functional morphology of the sonic apparatus in the fawn cusk-eel Lepophidium profundorum (Gill, 1863). Journal of Morphology 268(11): 953-966.
Floeter, S. R., L. A. Rocha, D. R. Robertson, J. C. Joyeux, W. F. Smith-Vaniz, P. Wirtz, A. J. Edwards, J. P. Barreriros, C. E. Ferreira, J. L. Gasparini, A. Brito, J. M. Falcon, B. W. Bowen, and G. Bernardi. 2008. Atlantic reef fish biogeography and evolution. Journal of Biogeography 35: 22-47.
Froese, R. and D. Pauly, editors. 2009. FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (08/2010).
Gallo, M., I. MacLean, N. Tyreman, K. J. B. Martins, D. Syrotuik, and T. Gordon. 2008. Adaptive responses to creatine loading and exercise in fast-twitch rat skeletal muscle. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 294(4): 1319-1328.
Hamoir, G., and B. Focant. 1981. Protein differences between the sarcoplasmic reticulums of the superfast swimbladder and the fast skeletal-muscles of the Toadfish Opsanus Tau. Molecular Physiology 1(6): 353-359.
Holmes, K. C., D. Popp, W. Gebhard, and W. Kabsch. 1990. Atomic model of the actin filament. Nature 347(6288): 44-49.
Howes, G. J. (1992). Notes on the anatomy and classification of ophidiiform fishes with particular reference to the abyssal genus Acanthonus Gunther, 1878. Bull Br Mus Nat Hist (Zool) 58: 95-131.
Klausewitz, W., and F. Uiblein. 1994. Tiefenwasser- und tiefseefische aus dem roten meer. XVII. Oligopus robustus, a new record for the Red Sea, with comparative studies on specimens from the Gulf of Aden. Senckenbergiana Marit 25: 21-28
Kruger, N. J., and A. Schaewen. 2003. The oxidative pentose phosphate pathway: structure and organisation. Current Opinion in Plant Biology 6(3): 236-246.
Lai, C. Y., O. Tchola, T. Cheng, and B. L. Horecker. 1965. Mechanism of action of aldolases. Number of Combining Sites in Fructose Diphosphate Aldolase. Journal of Biological Chemistry 240(3): 1347-1350.
Lee, M. Y. 2005. Taxonomic Studies of Ophidiid Fishes (Teleostei:Ophidiiformes) From Taiwan. National Taiwan Ocean University.
Lee, A., R. E. Westenbroek, F. Haeseleer, K. Palczewski, T. Scheuer, and W. A. Catterall. 2002. Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1. Nature Neuroscience 5(3): 210-217.
Lombarte, A., and A. Cruz. 2007. Otolith size trends in marine fish communities from different depth strata. Journal of Fish Biology 71(1): 53-76.
Losos, J. B., and D. B. Miles. 1994. Adaptation, constraint, and the comparative method: phylogenetic issues and methods. In Ecological Morphology (Wainwright, P. C. and Reilly, S. M., eds),. Chicago, IL: The University of Chicago Press 13-41.
Mann, D. A., J. BowersAltman, and R. A. Rountree. 1997. Sounds produced by the striped cusk-eel Ophidion marginatum (Ophidiidae) during courtship and spawning. Copeia (3): 610-612.
Merkulova, T., M. Lucas, C. Jabet, N. Lamande, J. D. Rouzeau, and F. Gros. 1997. Biochemical characterization of the mouse muscle-specific enolase: Developmental changes in electrophoretic variants and selective binding to other proteins. Biochemical Journal 323: 791-800.
Morimoto, R. I., and M. G. Santoro. 1998. Stress-inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nature Biotechnology 16(9): 833-838.
Mosegaard, H., H. Svedang, and K. Taberman. 1988. Uncoupling of Somatic and Otolith Growth-Rates in Arctic Char (Salvelinus-Alpinus) as an Effect of Differences in Temperature Response. Canadian Journal of Fisheries and Aquatic Sciences 45(9): 1514-1524.
Nguyen, T. K., H. Lin, E. Parmentier, and M. L. Fine. 2008. Seasonal variation in sonic muscles in the fawn cusk-eel Lepophidium profundorum. Biology Letters 4(6): 707-710.
Nielsen, J. G., D. M. Cohen, D. F. Markle, and C. R. Robins. 1999. Ophidiiform fishes of the world (order Ophidiiformes). Rome: FAO. FAO Species Catalog 18: 178
Parmentier, E., V. Gennotte, B. Focant, G. Goffinet, and P. Vandewalle. 2003. Characterization of the primary sonic muscles in Carapus acus (Carapidae): a multidisciplinary approach. Proceedings of the Royal Society of London Series B-Biological Sciences 270(1530): 2301-2308.
Parmentier, E., N. Fontenelle, M. L. Fine, P. Vandewalle, and C. Henrist. 2006. Functional morphology of the sonic apparatus in Ophidion barbatum (Teleostei, Ophidiidae). Journal of Morphology 267(12): 1461-1468.
Rome, L. C., D. A. Syme, S. Hollingworth, S. L. Lindstedt, and S. M. Baylor. 1996. The whistle and the rattle: The design of sound producing muscles. Proceedings of the National Academy of Sciences of the United States of America 93(15): 8095-8100.
Rose, J. A. 1961. Anatomy and sexual dimorphism of the swimbladder and vertebral column in Ophidion holbroolci (Pisces: Ophidiidae). Bull. Mar. Sci. Gulf Caribb 11 (2): 280-308.
Shao, K. T. 2009. Taiwan Fish Database. World Wide Web electronic publication. http://fishdb.sinica.edu.tw, version (08/2010).
Shen, S. C. chief ed. 1993. Fishes of Taiwan. Dept. of Zoology, National Taiwan University 174-176.
Tikunov, B. A., and L. C. Rome. 2009. Is high concentration of parvalbumin a requirement for superfast relaxation? Journal of Muscle Research and Cell Motility 30(1-2): 57-65.
Tomanek, L., and G. N. Somero. 2002. Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. Journal of Experimental Biology 205(5): 677-685.
Trask, R. V., A. W. Strauss, and J. J. Billadello. 1988. Developmental Regulation and Tissue-Specific Expression of the Human-Muscle Creatine-Kinase Gene. Journal of Biological Chemistry 263(32): 17142-17149.
Ulrich, K. M., Decking, C. A., Theo, W., Markus, W., and Jurgen, S. (2001). Functional aspects of creatin kinase isoenzymes in endothelial cells. Am J Physiol Cell Physiol 281(3): 20-328
Uiblein, F. 1995. Morphological Variability between Populations of Neobythites- Stefanovi (Pisces, Ophidiidae) from the Deep Red-Sea and the Gulf-of-Aden. Marine Ecology-Progress Series 124(1-3): 23-29.
Vermeij, G. J. 1978. Biogeography and adaption: paterns of marine life. Harvard University Press, Cambridge, MA.
Wainwright, P. C., and B. A. Richard. 1995. Scaling the Feeding Mechanism of the Largemouth Bass (Micropterus-Salmoides) - Motor Pattern. Journal of Experimental Biology 198(5): 1161-1171.
Wilson, J. R., and R. Raymond. 1985. Depth-related changes in sagitta morphology in six macrourid fishes of the Pacific and Atlantic Oceans. Copeia (4): 1011-1017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code