論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-10-04
校外 Off-campus:開放下載的時間 available 2027-10-04
論文名稱 Title |
應用於無線通訊系統之智慧中繼器設計 Design of Smart Repeater for Wireless Communication Applications |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
78 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-09-20 |
繳交日期 Date of Submission |
2024-10-04 |
關鍵字 Keywords |
智慧中繼器、可重構智慧反射表面、轉頻式主動智慧中繼器、自干擾消除式主動智慧中繼器、波束成型、MIMO Smart repeater(SR), Reconfigurable Intelligence Surface, requency-converting active SR, self-interference cancellation active SR, Beamforming, MIMO |
||
統計 Statistics |
本論文已被瀏覽 44 次,被下載 0 次 The thesis/dissertation has been browsed 44 times, has been downloaded 0 times. |
中文摘要 |
SR被普遍視為實現6G行動通訊效能指標的關鍵技術之一。而多輸入多輸出(Multiple-Input Multiple-Output,簡稱MIMO)系統是當前5G及未來6G的重要發展趨勢,因為MIMO系統能以一種不增加系統頻寬的方式提升系統效能,因此如何利用SR優化MIMO系統成為一項重要課題。然而,在MIMO系統中隨著頻率的升高導致天線陣列的更緊密排列,隔離度不足使得主動式SR無法提供更大的系統增益的問題隨著頻率愈發嚴重。 因此,本論文提出了三種可行性架構,包括兩種轉頻式主動SR架構,這些設計利用轉頻來使用不同頻段的輸入輸出天線以避開天線間之隔離度需求。此外,針對相同頻段之輸入輸出天線,本論文提出了一種基於自干擾消除(Self-Interference Cancellation,簡稱SIC)的主動式SR架構,通過電路改善等校天線隔離度的方式來滿足主動式SR因更高的系統增益所產生的隔離度需求。本論文對上述架構設計進行了可行性評估,並通過實測驗證其可行性。 |
Abstract |
SR is widely regarded as one of the key technologies for achieving 6G mobile communication performance indicators. Multiple-Input Multiple-Output (MIMO) systems represent a significant development trend in current 5G and future 6G networks, as they can enhance system performance without increasing system bandwidth. Therefore, optimizing MIMO systems using SR has become an important issue. However, in MIMO systems, higher frequencies lead to closer antenna array arrangements, resulting in insufficient isolation, which diminishes the system gain provided by active SR, especially at higher frequencies. This paper proposes three feasible architectures, including two frequency-converting active SR designs. These designs utilize frequency conversion to employ input and output antennas in different bands, thus circumventing the isolation requirements between antennas. Furthermore, for input and output antennas operating in the same band, this paper presents an active SR architecture based on Self-Interference Cancellation (SIC). This architecture increases effective antenna isolation to meet the isolation requirements generated by the higher system gain of active SR. This paper evaluates the feasibility of these designs and verifies their viability through practical measurements. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iv Abstract v 圖次 viii 表次 xi 第一章 緒論 1 1.1研究背景 1 1.2 RIS架構介紹 3 1.2.1 被動式RIS與主動式RIS差別 6 1.3 Active RIS的侷限 7 1.3.1 巴克豪森穩定條件 8 1.3.2 改良主動式RIS設計 9 1.4 應用場景 9 1.5 章節規劃 10 第二章 UE-CoMIMO 11 2.1 技術原理 11 2.1.1 轉頻主動式SR雛形驗證 13 2.2.1 系統元件介紹 15 2.2.2 自製元件介紹 16 2.3 通訊實驗 19 2.3.1 通訊平台介紹 19 2.3.2 OTA通訊實驗測試 22 第三章 自干擾消除主動式SR 34 3.1.1 自干擾消除分析 36 3.2 天線與元件介紹 40 3.2.1 SR天線介紹 40 3.2.2 元件介紹 42 3.3.1 時間延遲匹配 49 3.3.2 SIC頻帶外增益抑制 51 3.4 通訊系統測試 54 3.4.1 1T1R SIC-ASR通訊系統測試 54 3.4.2 1T1R SIC-ASR OTA系統測試 59 3.4.3 2T2R SIC-ASR之預期挑戰 61 第四章 結論與未來展望 63 參考文獻 64 |
參考文獻 References |
[1]Mediatek 6G Vision White Paper Version 1.0 [Online].Available: https://d86o2zu8ugzlg.cloudfront.net/mediatek-craft/documents/MediaTek-6G-Vision-White-Paper-EN0122.pdf [2]C. De Lima et al., “Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges,” IEEE Access, vol. 9, pp. 26902–26925, 2021. [3]I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, ‘‘A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3060–3097, 4th Quart., 2018. [4]M. Agiwal, A. Roy, and N. Saxena, "Next Generation 5G Wireless Networks: A Comprehensive Survey," IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617-1655, 2016. [5]M. Xiao et al., "Millimeter Wave Communications for Future Mobile Networks," IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1909-1935, 2017. [6]V. Venkateswaran and A.-J. van der Veen, “Analog beamforming in MIMO communications with phase shift networks and online channel estimation,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4131–4143, Aug. 2010. [7]D. Chian et al., “Active SR-assisted MIMO-OFDM system: Analyses and prototype measurements,” IEEE Commun. Lett., vol. 28, no. 1, pp. 208–212, Jan 2024 [8]Q. Wang and Y. D. Jing, “Performance analysis and scaling law of MRC/MRT relaying with CSI error in multi-pair massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5882–5896, Sep. 2017.Wi [9]X. Mu, Y. Liu, J. Xu, L. Guo, and J. Lin, “Joint beamforming optimization for simultaneously transmitting and reflecting (STAR) SR aided communications : (invited paper),”in 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, Oct, 2021, pp. 709–714. [10]M. M. Amri, “Recent trends in the Smart repeaters (SR): Active SR to brain-controlled SR,” in Proc. IEEE Int. Conf. Commun., Netw. Satell. (COMNETSAT), Nov. 2022, pp. 299–304. [11]R. Sankar and S. P. Chepuri, “Beamforming in hybrid SR assisted integrated sensing and communication systems,” in Proc. EUSIPCO, Belgrade, Serbia, 2022, pp. 1082–1086. [12]Q. Zhu, H. Li, R. Liu, M. Li, and Q. Liu, “Hybrid beamforming and passive reflection design for SR-assisted mmWave MIMO systems,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Montreal, QC, Canada, 2021, pp. 1–6. [13]M. M. Amri, “Recent trends in the Smart repeaters (SR): Active SR to brain-controlled SR,” in Proc. IEEE Int. Conf. Commun., Netw. Satell. (COMNETSAT), Nov. 2022, pp. 299–304. [14]R. A. Tasci, F. Kilinc, E. Basar, and G. C. Alexandropoulos, “A new SR architecture with a single power amplifier: Energy efficiency and error performance analysis,” IEEE Access, vol. 10, pp. 44804–44815, 2022. [15]K. E. Kolodziej, B. T. Perry, and J. G. McMichael, “Multitap RF canceller for in-band full-duplex wireless communications,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4321–4334, Jun. 2016. [16]C. Shi et al., “Wideband RF self-interference cancellation for FMCW phased-array radar,” IEEE Access, vol. 8, pp. 225284–225293, 2020. [17]K. E. Kolodziej, J. G. McMichael, and B. T. Perry, “Adaptive RF canceller for transmit-receive isolation improvement,” in Proc. IEEE Radio Wireless Symp. (RWS), Jan. 2014, pp. 172–174. [18]L.-S. Tsai et al., “MIMO Evolution Toward 6G: End-User-Centric Collaborative MIMO,” IEEE Commun. Mag., 2023, pp. 1–7. [19]S. Hong et al., ‘‘Applications of self-interference cancellation in 5G and beyond,’’ IEEE Commun. Mag., vol. 52, no. 2, pp. 114–121, Feb. 2014. [20]K. E. Kolodziej, J. G. McMichael, and B. T. Perry, ‘‘Multitap RF canceller for in-band full-duplex wireless communications,’’ IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4321–4334, Jun. 2016. [21] P1214 advanced technology materials INC [Online].Available: https://www.alldatasheet.co.kr/datasheet-pdf/pdf/261100/ATM/P1214.html [22] Marvelous Microwave .com[Online].Available: https://micro-mve.com/ |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-10-04 校外 Off-campus:開放下載的時間 available 2027-10-04 您的 IP(校外) 位址是 3.16.69.243 現在時間是 2024-11-22 論文校外開放下載的時間是 2027-10-04 Your IP address is 3.16.69.243 The current date is 2024-11-22 This thesis will be available to you on 2027-10-04. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-10-04 |
QR Code |