Responsive image
博碩士論文 etd-0908124-121200 詳細資訊
Title page for etd-0908124-121200
論文名稱
Title
操作於高頻與特高頻段之自我注入鎖定雷達系統
Self-Injection Locking Radar System Operating in High Frequency and Very High Frequency Bands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-09-20
繳交日期
Date of Submission
2024-10-08
關鍵字
Keywords
高頻雷達、特高頻雷達、都普勒相位資訊、頻率調變連續波雷達、外差式自我注入鎖定雷達
HF radar, VHF radar, Doppler phase information, frequency-modulated continuous-wave radar, heterodyne self-injection locking radar
統計
Statistics
本論文已被瀏覽 31 次,被下載 0
The thesis/dissertation has been browsed 31 times, has been downloaded 0 times.
中文摘要
本論文使用整合自我注入鎖定技術與高增益天線,提出操作於高頻與特高頻頻段的外差式自我注入鎖定雷達。藉由此種方式使發射訊號操作於高頻頻段時,振盪器可以操作於微波頻段而擁有較大的鎖定範圍。對於SIL雷達自我注入鎖定所造成的相位轉頻率調變能提供額外的訊雜比增益。這使得此架構可以藉由提升頻率來更有效地改善SIL雷達系統靈敏度。較於傳統雷達系統,能有效改善靈敏度、降低雜波與周遭環境之干擾、以及降低成本。
本論文藉由此架構將振盪器輸出之900 MHz訊號降頻至30 MHz的高頻訊號或150 MHz的特高頻訊號,以偵測遠距離目標。並藉由將包含都普勒相位資訊的接收訊號升頻並注入回振盪器,以保持利用高頻 SILO 的靈敏度來提高系統的訊雜比。並藉由雷達系統的子電路測試、連續波模式的閉迴路系統測試與開迴路目標物偵測,驗證該雷達系統能得到正確的都普勒資訊。
Abstract
This paper presents a heterodyne radar system operating in the high-frequency(HF)and very high-frequency(VHF)bands, integrating self-injection locking(SIL)technology with high-gain antennas. By employing this method, when the transmitted signal operates in the HF band, the oscillator can operate in the microwave band, offering a larger locking range. The phase-to-frequency modulation caused by self-injection locking in the SIL radar provides additional signal-to-noise ratio(SNR)gain. This allows the system to effectively improve the sensitivity of the SIL radar by increasing the frequency. Compared to traditional radar systems, this architecture enhances sensitivity, reduces clutter and environmental interference, and lowers costs.
In this paper, the oscillator output signal of 900 MHz is down-converted to 30 MHz(HF signal)or 150 MHz(VHF signal)to detect distant targets. The received signal, containing Doppler phase information, is up-converted and reinjected into the oscillator to maintain the sensitivity advantage provided by the high-frequency SILO, thereby improving the system's SNR. Through sub-circuit tests of the radar system, closed-loop system tests in continuous-wave mode, and open-loop target detection, the radar system is validated to correctly obtain Doppler information.
目次 Table of Contents
論文審定書..................................................................................................................................................i
誌謝..............................................................................................................................................................ii
摘要..............................................................................................................................................................iv
Abstract........................................................................................................................................................v
目錄..............................................................................................................................................................vi
圖次..............................................................................................................................................................ix
表次..............................................................................................................................................................xi
第一章 序論................................................................................................................................................. 1
1.1研究背景與動機.....................................................................................................................................1
1.2雷達介紹.................................................................................................................................................2
1.2.1都普勒雷達..........................................................................................................................................2
1.2.2高頻雷達..............................................................................................................................................3
1.2.3特高頻雷達..........................................................................................................................................5
1.3章節規劃.................................................................................................................................................7
第二章 雷達系統架構的原理與驗證.........................................................................................................9
2.1 自我注入鎖定雷達................................................................................................................................9
2.1.1自我注入定技術原理..........................................................................................................................9
2.2外差式自我注入雷達系統介紹.............................................................................................................11
2.3元件參數.................................................................................................................................................14
2.3.1 DDS介紹..............................................................................................................................................17
2.3.2頻率解調器介紹..................................................................................................................................20
2.4系統閉迴路測試.....................................................................................................................................21
2.4.1子系統量測..........................................................................................................................................21
2.4.2 連續波模式測試.................................................................................................................................27
第三章 雷達系統的戶外量測.....................................................................................................................30
3.1實驗設置.................................................................................................................................................30
3.1.1測試場地介紹......................................................................................................................................30
3.1.2系統設置..............................................................................................................................................31
3.2 PAC-12 HF ANTENNA之偵測結果..........................................................................................................33
3.2.1 PAC-12 HF antenna改良與性能測試.................................................................................................33
3.2.2 使用PAC-12 HF antenna於系統的偵測實驗.....................................................................................37
3.3 YAGI-UDA ANTENNA之偵測結果...........................................................................................................42
3.3.1 Yagi-Uda antenna性能測試................................................................................................................42
3.3.2使用Yagi-Uda antenna於系統偵測汽車.............................................................................................44
3.3.3使用Yagi-Uda antenna於系統偵測無人機.........................................................................................46
第四章 結論.................................................................................................................................................53
參考文獻......................................................................................................................................................54
參考文獻 References
[1]林家豐,高家俊,董東璟,張育瑋(2005) "應用 X-band 雷達於分析海面況之研究",第二十七屆海洋工程研討會論文集。
[2]台灣海洋科技研究中心TORI [Online].Available: https : // www . tori. narl. org.tw/Default.aspx
[3]楊文昌,梁恩昱,王雅真,陳少華,胡建驊,李俊賢(2010) "利用高頻雷達監 測台灣四周海域表層海流",第三十二屆海洋工程研討會論文集。
[4] D.G. Money, D.J. Emery, T.M. Blake, C.F. Clutterbuck and S.J. Ablett, “HF surface wave radar management techniques applied to surface craft detection,” in Proc. IEEE Int. Radar Conf., May. 2000, pp. 110-115.
[5] M. Turley, “Impulsive noise rejection in HF radar using a linear prediction technique,” in Proc. IEEE Int. Radar Conf., Mar. 2003, pp. 358-362.
[6]C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. Asia-Pacific Microwave Conf., Dec. 2010, pp. 283-290.
[7]M. I. Skolnik, “CW and frequency-modulated radar,” in Introduction to Radar Systems, 3rd ed. New York, NY, USA: McGraw-Hill, 2001, pp. 68–100.
[8] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with dc offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073-1079, May 2007.
[9] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 567-570.
[10]L. Ren, L. Kong, F. Foroughian, H. Wang, P. Theilmann, and A. E. Fathy, “Comparison study of noncontact vital signs detection using a Doppler stepped- frequency continuous-wave radar and camera-based imaging photoplethysmography,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3519-3529, Sep. 2017.
[11] M. Camponeschi, A. Bevilacqua, M. Tiebout, and A. Neviani, “A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 141-143, Mar. 2012.
[12]Guochao Wang, Changzhan Gu, Takao Inoue, Member, and Changzhi Li, “A Hybrid FMCW-Interferometry Radar for Indoor Precise Positioning and Versatile Life Activity Monitoring,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2812-2822, Nov. 2014.
[13] Schleicher, I. Nasr, A. Trasser and H. Schumacher, "IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring", IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076-2085, May 2013.
[14] L. Ren, Y. S. Koo, Y. Wang and A. E. Fathy, "Noncontact heartbeat detection using UWB impulse Doppler radar", Proc. IEEE Topical Conf. Biomed. Wireless Technol. Netw. Sens. Syst. (BioWireleSS), pp. 1-3, Jan. 2015.
[15] P. Park and S. Kim, "A continuous sweep-clock-based time-expansion impulse-radio radar", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 65, no. 9, pp. 3049-3059, Sep. 2018.
[16] X. Gao and O. Boric-Lubecke, “Radius correction technique for Doppler radar
noncontact periodic displacement measurement,” IEEE Trans. Microw. Theory
Techn., vol. 65, no. 2, pp. 621–631, Feb. 2017.
[17] Schleicher, I. Nasr, A. Trasser and H. Schumacher, "IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring", IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076-2085, May 2013.
[18]J.F. Thomason,“Development of over-the-horizon radar in the United States” in Proc. IEEE Int. Radar Conf., Sep. 2003, pp. 599-601.
[19] G. Fabrizio, D. Holdsworth, B. Ward, and D. Sinnott, “Evolution of over-the-horizon radar in Australia from humble origins to opera-tional capabilities,” IEEE Aerosp. Electron. Syst. Mag., vol. 38, no. 1, pp. 38–52, Jan. 2023.
[20]D. Holdsworth, K. Mulder, and M. Turley, “Jindalee operational radar network: New growth from old roots,” in Proc. IEEE Radar Conf., 2022, pp. 1–6
[21] Anna Dzvonkovskaya, Hermann Rohling,“Fast-moving target observation using
high-frequency surface wave radar,” in Proc. IEEE Int. Radar Conf., Oct. 2014,
pp. 1-4.
[22]可重定位超視距雷達站 [Online] Availabe: https: //en.wikipedia.org/wiki/Over-t he-horizon_radar#/media/File:ROTHR_USNavy_b.png
[23]杜加雷達陣列 [Online] Availabe: https://en.wikipedia.org/wiki/Over-the- horizon _radar#/media/File:DUGA_Radar_Array_near_Chernobyl,_Ukraine_2014.jpg
[24]奧克拉荷馬州的氣象雷達 [Online] Availabe: https://zh.wikipedia.org/zh-tw/% E6%B0%94%E8%B1%A1%E9%9B%B7%E8%BE%BE#/media/File:NSSL_Doppler_with_rainshaft_-_NOAA.jpg
[25] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3143–3152, Dec. 2009
[26] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no.6, pp. 351–357, Jun. 1946.
[27] Fu-Kang Wang, Chien-Jung Li, Chieh-Hsun Hsiao, Tzyy-Sheng Horng, Jenshan Lin, Kang-Chun Peng, Je-Kuan Jau, Jian-Yu Li , and Cheng-Chung Che, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn, vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[28] Xueyang Gen, Fa Foster Da, J. David Irwi, and Richard C. Jaege, “24-Bit 5.0 GHz Direct Digital Synthesizer RFIC With Direct Digital Modulations in 0.13 µm SiGeBiCMOS Technology” IEEE Trans. Circuits Syst, VOL. 45, NO. 5, MAY 2010.
[29] F.-K. Wang et al., “Review of self-injection-locked radar systems for noncontact detection of vital signs,” IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 4, no. 4, pp. 294–307, Dec. 2020.
[30] ADL5380 [Online] Available: https://www.mouser.tw/images/adi/lrg/ ADL5380 EVALZ_T.jpg
[31] Fu-Kang Wang, Tzyy-Sheng Horng, Kang-Chun Peng, Je-Kuan Jau,Jian-Yu Li, Cheng-Chung Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011.
[32] MS2027C [Online] Availabe: https://cdn.everythingrf.com/live/565134_ ms2027c _big.jpg
[33] USB-SA44B [Online] Availabe: https://www.sglabs.it/public/SgLabs_m_SH_ U SB-SA44B_1.JPG
[34] PAC-12 HF antenna [Online] Availabe: https://m.media-amazon.com/images /I/ 4 1pxzAHAorL._AC_.jpg
[35] K. B. Cooper et al., “Using FMCW Doppler radar to detect targets up to the maximum unambiguous range,” IEEE Geosci. Remote Sens. Lett.,vol. 14, no. 3, pp. 339–343, Mar. 2017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-10-08
校外 Off-campus:開放下載的時間 available 2027-10-08

您的 IP(校外) 位址是 18.226.82.90
現在時間是 2024-11-22
論文校外開放下載的時間是 2027-10-08

Your IP address is 18.226.82.90
The current date is 2024-11-22
This thesis will be available to you on 2027-10-08.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2027-10-08

QR Code