博碩士論文 etd-0909108-141803 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 呂以文(Yi-wun Lu) 電子郵件信箱 E-mail 資料不公開
畢業系所 資訊管理學系研究所(Information Management)
畢業學位 博士(Ph.D.) 畢業時期 96學年第2學期
論文名稱(中) 網際網路創新擴散現象之研究
論文名稱(英) Internet Innovation Diffusion
檔案
  • etd-0909108-141803.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外完全公開

    論文語文/頁數 英文/130
    統計 本論文已被瀏覽 5651 次,被下載 2272 次
    摘要(中) 網際網路本身是一項創新,有人創造新的應用和新的商業模式也看到了創業機會,也有公司視它為威脅,但不可否認地有大量的資本和人才投入到與網際網路相關的產業,這些網際網路的創新和創意在網路上傳遞著,被人們了解、接受和使用,然而以人為接受創新的單位來探討網際網路在個人間如何擴散的相關的研究並不多。本論文研究以傳統創新擴散理論和擴散數學模式之貝氏模式(Bass Model)和動態模式(Dynamic Model)來描述和解釋網際網路創新擴散現象的適配性,探討網際網路創新與傳統創新在個人之間擴散時的不同特性,提出兩個假說:1.網際網路創新擴散的潛在使用者數量是變量非常數;2.相較於傳統非網際網路創新,人們對網際網路創新的採納使用受到人際關係口碑影響的內部效應比受到廣告等的外部效應要強。研究中收集十二項網際網路創新的歷年會員成長數量,以非線性迴歸分析(Non-linear Regression Analysis)方式分別估計貝氏模式和動態模式之潛在使用者數量m、外部影響係數p和內部影響係數q。結果顯示動態模式的適配性優於貝式模式,由於動態模式的潛在使用者數量m為變量,因此支持網際網路創新擴散的潛在使用者數量是變量非常數之假說。將有效的估計結果之內部影響係數q和外部影響係數p比值q/p與過去傳統非網際網路創新擴散研究結果之內部影響係數q和外部影響係數p比值比較,結果顯示僅部分網際網路創新之q/p比值高於傳統非網路創新,因此假說二得到部分支持。依此網際網路創新之擴散特性,將網際網路區分為三大類型:非網站型創新(如:Internet、ADSL、Skype)、入口網站型創新(如:PChome、Yahoo!、AOL)和利基型網站創新(如:Amazon、eBay、PayPal),其中利基型網站之口耳相傳效應高,非網站型之廣告效應高。對於經營者而言,應利用此不同特性選擇適合的推廣行銷策略,以達到事半功倍的效果。
    摘要(英) The diffusion of the Internet is the interest of many firms or individuals who see the Internet as an opportunity, a threat, or both. Huge amount of intellectual and real capital are invested on Internet. The more people understand the dynamics of Internet diffusion, the better they will manage the efforts put on it. The purpose of this study is to explore the extent to which the diffusion of the Internet-related innovation could be adequately described by the diffusion models and the effect of internal influence versus external influence described in the models. Two hypotheses of the Internet innovation diffusion are proposed. First, the number of potential adopters of the Internet innovation diffusion is dynamic, not constant. Second, in contrast to the traditional innovations, the diffusion of Internet innovation has stronger interpersonal communication influence than the promotional activity effect. Twelve Internet innovations are estimated in both the Bass model and the Dynamic model. The first hypothesis is fully supported, and the second hypothesis is partially supported. Based on the evidence, Internet innovations can be categorized into web-based versus non-web. The non-web Internet innovation of connection and communication like Internet, ADSL, and Skype has no significant difference of the ratio of the internal influence and the external influence effects to the traditional innovations. The segment-focused niche website, such as Amazon, eBay, and PayPal, has the strong internal influence effect. Understanding the various effects of Internet innovation diffusion can provide advantages in terms of enhancing functions and planning marketing strategies and tactics.
    關鍵字(中)
  • 網際網路
  • 動態模式
  • 貝氏模式
  • 創新擴散
  • 非線性迴歸分析
  • 關鍵字(英)
  • Dynamic Model
  • Bass Model
  • Innovation Diffusion
  • Internet
  • 論文目次 LIST OF TABLES v
    LIST OF FIGURES vii
    ABSTRACT ix
    CHAPTER I: INTRODUCTION 1
    1. Statement of Purpose 1
    2. Research Process 4
    CHAPTER II: LITERATURE REVIEW 6
    1. Diffusion Theory 6
    The Innovation 7
    Communication 8
    Social System 8
    Time 9
    Diffusion Research 12
    2. Mathematical models of diffusion 14
    Diffusion Model of Single Innovation 14
    Diffusion Model of Multi-Innovations 18
    3. Internet Innovation 21
    4. Diffusion and Adoption of IS/IT 24
    CHAPTER III: THEORETICAL BACKGROUND AND HYPOTHESES 27
    1. Bass Diffusion Model 27
    2. Observation and Hypotheses Development 29
    Dynamic Potential Adopters 29
    Stronger Internal Influence than External Influence 30
    CHAPTER IV: RESEARCH DESIGN 32
    1. Research Method 32
    2. Research Domain 32
    Adopter 32
    Innovations 33
    Data Source 42
    3. Hypotheses Test 43
    CHAPTER V: RESULT AND ANALYSIS 47
    1. Basic Analysis 47
    2. Potential Adopter Analysis 51
    3. Ratio of External and Internal Influence Effect - Comparison to Prior Studies 52
    CHAPTER VI: CONCLUSION 60
    REFERENCE 62
    APPENDIX 68
    A. Internet User in Taiwan 68
    B. ADSL Users in Taiwan 73
    C. PChome Users in Taiwan 77
    D. American Online (AOL) Global Users 83
    E. Yahoo! Global Users 87
    F. Amazon Global Users 92
    G. eBay Global Users and Active Users 95
    H. Global Wikipedian 102
    I. PayPal Global Users 108
    J. Skype Global Users 112
    K. Skype Users in Taiwan 117
    參考文獻 Abrahamson, E. and L. Rosenkopf (1997) ‘Social Network Effects on the Extent of Innovation Diffusion: A Computer Simulation,’ Organization Science, 8, 3, pp. 289-309.
    ACI-Find, (2004a) http://www.find.org.tw/0105/howmany/howmany_disp.asp?id=79
    ACI-Find, (2004b) http://www.find.org.tw/0105/howmany/howmany_disp.asp?id=71
    Amara, R. (1990) ‘New Directions for Innovation,’ Futures, March, 22, 2, pp.142-152
    Antil, J.H. (1988) ‘New Product or Service Adoption: When Does It Happen?’ The Journal of Consumer Marketing, 5, 2, pp. 5-16
    Bass, F.M. (1969) ‘A New Product Growth Model for Consumer Durables,’ Management Science, 15 (January 1969), pp. 215-227.
    Bayus, B.L., N. Kim, and A.D. Shocker (2000) ‘Growth Models for Multi-product Interactions: Current Status and New Directions,’ in New-Product Diffusion Models, V. Mahajan, E. Muller and Y. Wind, ed., Boston: Kluwer Academic Publishers, pp. 141-163.
    Brancheau, J.C. and J.C. Wetherbe (1990) ‘The Adoption of Spreadsheet Software: Testing Innovation Diffusion Theory in the Context of End-User Computing,’ Information Systems Research, 1, 2, pp. 115-143.
    Chircu, A.M. and R.J. Kauffman (2000) ‘Reintermediation Strategies in Business-to-Business Electronic Commerce,’ International Journal of Electronic Commerce, 4, 4, pp. 7-42.
    Davis, F.D. (1989) ‘Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,’ MIS Quarterly, 13, 3, pp. 319-340.
    David, F.D., R.P. Bagozzi, and P.R. Warshaw (1989) ‘User Acceptance of Computer Technology: A Comparison of Two Theoretical Models,’ Management Science, 35, 8, pp. 982-1003.
    Detmer, W.M. and E. Shortliefe (1997) ‘Using the Internet to Improve Knowledge Diffusion in Medicine,’ Communication of the ACM, 40, 8, pp. 101-108.
    DiMaggio P., E. Hargitti, W.R. Neuman and J.P. Robinson (2001) ‘Social Implications of the Internet,’ Annual Review of Sociology, 27, pp. 307-336.
    Dodds, W. (1973) ‘An Application of the Bass Models in Long-Term New Product Forecasting,’ Journal of Marketing Research, 10, pp. 308-311.
    Dos Santos, B.L. and K. Peffers (1998) ‘Competitor and Vendor Influence on the Adoption of Innovative Applications in Electronic Commerce,’ Information & Management, 34, pp. 175-184.
    Easingwood, C.J., V. Mahajan and E. Muller (1983) ‘A Nonuniform Influence Innovation Diffusion Model of New Product Acceptance,’ Marketing Science, 2, 3, pp. 273-295.
    Ferguson, G.K. (2002) ‘An Extended Bass Model of Technology Innovation Diffusion, Applied to The United States Internet,’ Ph.D. dissertation of Stanford University.
    Fichman, R.G. and C.F. Kemerer (1999) ‘The Illusory Diffusion of Innovation: An Examination of Assimilation Gaps,’ Information Systems Research, 10, 2, pp. 255-275.
    Goodman, S.E., L.I. Press, S.R. Ruth and A.M. Rutkowski (1994) ‘The Global Diffusion of the Internet: Pattern and Problems,’ Communication of the ACM, 37, 8, pp. 27-31.
    Gurbaxani, V. (1990) ‘Diffusion in Computing Networks: the Case of BITNET,’ Communication of the ACM, 33, 12, pp.65-75.
    Gurbaxani, V. and H. Mendelson (1990) ‘An Integrative Model of Information Systems Spending Growth,’ Information Systems Research, 1, 1, pp.23-46.
    Hawes, D.K. (1987) ‘The Role of Marketing in Facilitating the Diffusion of Microcomputers and “The Information Society”,’ Academy of Marketing Science, 15, 2, pp. 83-90.
    Hoffman, D.L. and T.P. Novak (1996) ‘Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations,’ Journal of Marketing, 60, 3, pp. 50-68.
    Horsky, D. and L.S. Simon (1983) ‘Advertising and the Diffusion of New Products,’ Marketing Science, Vol. 5, pp. 1-18
    Kalish, S. (1985) ‘A New Product Adoption Model with Pricing, Advertising and Uncertainty,’ Management Science, 31 (December), pp. 1569-1585.
    Kwon, H.C. (2002) ‘Global Internet Diffusion and Its Factors: A Cross-National Analysis,’ Ph.D. dissertation, State University of New York at Buffalo.
    Lekvall, P. and C. Wahlbin (1973) ‘A Study of Some Assumptions Underlying Innovation Diffusion Functions,’ Swedish Journal of Economics, 75, pp. 326-377.
    Lin, H.H. and K.H. Chen (1995) ‘Two Phase Fitting Analysis of Software Debugging Data,’ working paper, Sun Yat-sen University.
    Lundblad, J. (2003) ‘A Review and Critique of Rogers’ Diffusion of Innovation Theory as it Applies to Organizations,’ Organization Development Journal, 21, 4, pp. 50-64.
    Mahajan, V. and E. Muller (1979) ‘Innovation Diffusion and New Product Growth Models,’ Journal of Marketing, 43, Fall, pp. 55-68.
    Mahajan, V. and R.A. Peterson (1985) Models for Innovation Diffusion, Beverly Hill, CA: Sage Publication Inc.
    Mahajan, V., E. Muller, and F.M. Bass (1990) ‘New Product Diffusion Models in Marketing: A Review and Directions for Research,’ Journal of Marketing, 54, pp. 1-26.
    Mahajan, V., E. Muller, and R.K. Srivastava (1990) ‘Determination of Adopter Categories by Using Innovation Diffusion Models,’ Journal of Marketing Research, 27, 1, pp. 37-50.
    Mahajan, V., E. Muller, and Y. Wind (2000) New-Product Diffusion Models, Kluwer Academic Publishers, Norwell, MA
    Montgomery, A. (2001) ‘Applying Qualitative Marketing Techniques to the Internet,’ Interfaces, 31, 2, pp. 90-108.
    Moore, G. and I. Benbasat (1991) ‘Development of an Instrument to Measure the perceptions of Adopting an Information technology Innovation,’ Information Systems Research, 2, 3, pp. 192-220.
    Morgan Stanley Report (2001) “Global IU3, Brand Value, and Customer Monetization for AOL, YHOO, EBAY, AMZN”, on February 21, 2001,
    Pae, J. H. and D. R. Lehmann (2003) ‘Multi-generation Innovation Diffusion: The Impact of Intergeneration Time,’ Academy of Marketing Science, Journal; Winter 2003; 3, 1
    Page, E.S. (1954) ‘Continuous Inspection Schemes,’ Biometrika, 41, pp. 100-115.
    Peterson, R.A. and V. Mahajan (1978) ‘Multi-Product Growth Models,’ in Research in Marketing, J. Shedth, ed., Greenwitch: JAI Press, pp. 201-231.
    Porter, M. (1980) Competitive Strategy: Techniques for Analyzing Industries and Competitors, New York: Free Press. (Republished with a new introduction, 1998.)
    Porter, M. (1985) Competitive Advantage: Creating and Sustaining Superior Performance, New York: Free Press. (Republished with a new introduction, 1998.)
    Porter, M. (1990) Competitive Advantage of Nations, New York: Free Press. (Republished with a new introduction, 1998.)
    Prescott, M.B. (1997) ‘Understanding the Internet as an Innovation,’ Industrial management + Data Systems, 97, 3, pp. 119.
    Press, L., G. Burkhart, W. Foster, S. Goodman, P. Wolcott, and J. Woodard (1998) ‘An Internet Diffusion Framework,’ Communication of the ACM, 41, 10, pp. 21-23.
    Rai, A., T. Ravichandran, and S. Samaddar (1998) ‘How to Anticipate the Internet’s Global Diffusion,’ Communications of the ACM, 41, 10, pp. 97-106.
    Rangaswamy, A. and S. Gupta (2000) ‘Innovation Adoption and Diffusion in the Digital Environment: Some Research Opportunity,’ in New-Product Diffusion Models, V. Mahajan, E. Muller and Y. Wind, ed., Boston: Kluwer Academic Publishers, pp. 75-96.
    Reardon, K.K. and E.M. Rogers (1988) ‘Interpersonal Versus Mass Media Communication: A False Dichotomy,’ Human Communication Research, 15, 2, pp. 284-303.
    Reichheld, F.F. and P. Schefter (2000) ‘E-loyalty: Your Secret Weapon on the Web,’ Harvard Business Review, July-August, pp. 105-113.
    Robertson, T. (1974) ‘A Critical Examination of Adoption Process Models of Consumer Behavior,’ in Models of Buyers Behavior, Sheth, L. ed., pp. 271.
    Rogers, E.M. (1976) ‘New Product Adoption and Diffusion,’ Journal of Consumer Research, 2, 4.
    Rogers, E.M. (1995) Diffusion of Innovation, 4th ed., New York: The Free Press.
    Rogers, E.M. (2003) Diffusion of Innovation, 5th ed., New York: The Free Press.
    Schmittlein, D.C. and V. Mahajan (1982) ‘Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance,’ Marketing Science, 1, 1, pp. 57-78.
    Schumpeter, J. (1983) The Theory of Economic Development: an Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle, Translated from German by Redvers Opie, New Brunswick: Transaction Publishers.
    Shao, Y.P. (1999) ‘Expert Systems Diffusion in British Banking: Diffusion Models and Media Factors,’ Information & Management, 35, pp. 1-8.
    Sharif, M.N. and K. Ramanathan (1981) ‘Binomial Innovation Diffusion Models with Dynamic Potential Adopter Population,’ Technological Forecasting and Social Changes, 20, pp. 63-87.
    Sultan, F., J.U. Farley, and D.R. Lehmann (1990) ‘A Meta-Analysis of Applications of Diffusion Models,’ Journal of Marketing Research, 27, pp. 70-77.
    Venkatesh, V. (1999) ‘Creation of Favorable User Perceptions: Exploring the Role of Intrinsic Motivation,’ MIS Quarterly, 23, 2, pp. 239-260.
    Venkatesh, V. and F.D. Davis (2000) ‘A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,’ Management Science, 46, 2, pp. 186-204.
    Venkatesh, A. (2000) ‘New Visions of Information Technology and Postmodernism: Implications for Advertising and Marketing Communications,’ pp. 319-336.
    Wang, C.H., R.D. Gopal, and A.Y. Tung (1997) ‘Diffusion of Ladder-type Innovations: A Study of Computer and Communications Convergence,’ Computers Industry Engineering, 32, 3, pp. 497-507.
    Wikipedia, (2008a) http://en.wikipedia.org/wiki/AOL
    Wikipedia, (2008b) http://en.wikipedia.org/wiki/Yahoo
    Wikipedia, (2008c) http://en.wikipedia.org/wiki/Amazon.com
    Wikipedia, (2008d) http://en.wikipedia.org/wiki/EBay
    Wikipedia, (2008e) http://en.wikipedia.org/wiki/Wikipedia
    Wikipedia, (2008f) http://en.wikipedia.org/wiki/PayPal
    Wikipedia, (2008g) http://en.wikipedia.org/wiki/Skype
    Zakon, R.H. (1997), Hobbes' Internet Timeline, Internet RFC 2235, [online] Available: http://www.faqs.org/rfcs/rfc2235.html
    Zakon, R.H. (2006), Hobbes' Internet Timeline v8.2, [online] Available: http://www.zakon.org/robert/internet/timeline/
    口試委員
  • 盧淵源 - 召集委員
  • 林福仁 - 委員
  • 林芬慧 - 委員
  • 郭峰淵 - 委員
  • 林信惠 - 指導教授
  • 口試日期 2008-07-15 繳交日期 2008-09-09

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫