博碩士論文 etd-0910107-105059 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 林敬智(Ching-chih Lin) 電子郵件信箱 irvin1971@hotmail.com
畢業系所 生物科學系研究所(Biological Sciences)
畢業學位 博士(Ph.D.) 畢業時期 95學年第2學期
論文名稱(中) 肝醣合成激酶-3β(Glycogen synthase kinase-3beta) 多重特性功能及其相關蛋白質之探討
論文名稱(英) Multiple tasks of Glycogen synthase kinase-3beta (GSK-3β ) and its partners
檔案
  • etd-0910107-105059.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內一年後公開,校外永不公開

    論文語文/頁數 英文/111
    統計 本論文已被瀏覽 5593 次,被下載 15 次
    摘要(中) 肝醣合成激酶3 (Glycogen synthase kinase-3) 在許多訊息傳遞途徑中扮演著重要的角色。在大多數的真核細胞亦發現相似的肝醣合成激酶。因為肝醣合成激酶3在細胞中具有許多調控的功能,因此本研究利用酵母菌雙雜合系統 (yeast two-hybrid system) 由人類testis cDNA library進行肝醣合成激酶3β (GSK3β) 結合蛋白的篩選。在篩選出的GSK3β結合蛋白中,本論文選取兩個結合蛋白進一步來探討其功能,一是中心體蛋白質 hNinein,另一個則是新發現可抑制 GSK3β 活性的結合蛋白質 (GSK3β interaction protein; GSKIP)。
    本論文第一部份研究發現中心體蛋白質 hNinein 具有四種不同C端區域 (CCII-termini) 的異構體 (isoforms),其中hNinein isoform 6 為本研究的新發現;且 hNinein isoform 6 其分布情形具有組織特異性。GSK3β 對於四種不同C端區域的 isoforms 亦具有不同的磷酸化作用。此外切除 hNinein 的N端或 CCII 區域都會造成 hNinein 結構上的改變而影響其在細胞內的分布情形,進而造成另一個中心體蛋白質 γ-tubulin 的位置改變。進一步將細胞內所有 hNinein isoforms 移除後發現 γ -tubulin 在中心體的含量也相對減少。利用功能區域交換 (domain swapping) 的實驗,發現 CCIIX-CCIIY region 提供了一個 γ-tubulin 的結合位置。當細胞過度表達全長或 CCIIX-CCIIY region 的hNinein 蛋白質都會顯著影響微管束 (microtubules) 的生成。綜上所述,hNinein 具有中心體坐落標的訊號 (centrosomal targeting signals),不僅可調控 hNinein 本身結構變化並提供與 γ-tubulin 的結合區域,進而影響其在細胞內分佈的情形。
    本論文第二部份,就肝醣合成激酶3beta 的作用蛋白 (GSK3β interaction protein; GSKIP) 可抑制 GSK3β 對 non-primed 受質磷酸化的活性,利用神經母細胞瘤 (neuroblastoma SH-SY5Y) 當作神經分化的模式來進一步研究其功能。實驗發現當過度表達 GSKIP 可抑制 retinoic acid 誘發神經母細胞瘤 SH-SY5Y 神經軸 (neurite outgrowth) 的生長。此現象與利用 GSK3β 專一性抑制劑 LiCl 或 SB415286 進行相同實驗結果一致。進一步研究發現 GSKIP 可能藉由蛋白質交互作用 (protein-protein interactions) 而非其他蛋白質修飾作用(post-modulation) 來調控 GSK3β 的活性;且 GSKIP 可能藉由抑制 GSK3β 對 tau 蛋白質特定位點的磷酸化而影響神經軸的生長。此外經由細胞生長曲線及 MTT assay 分析發現 GSKIP 可促進細胞週期循環加速。同時 GSK3β的活性受 GSKIP 抑制進而造成細胞內 β-catenin 和 cyclin D1 總量增加。根據上述結果,GSKIP 在 retinoic acid 誘發神經母細胞瘤 SH-SY5Y 神經分化的模式中具有兩種調控功能,不僅抑制神經軸的生長亦促進細胞數的增生。而這兩種功能可能都是藉由對 GSK3β的活性的抑制所導致。
    摘要(英) Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase which plays a key role in several signaling pathways and its homologues have been identified in most eukaryotes. Since GSK3βis an essential protein kinase that regulates numerous functions within the cell, an effort to survey possible GSK3β- interacting proteins from a human testis cDNA library using the yeast two-hybrid system is made. Two interesting candidates are chosen to characterize their functions in this study. One is a centrosomal protein, hNinein, and the other is a novel inhibitor of GSK3β, designated as GSKIP (GSK3β interaction protein).
    In the first part of the present thesis we describe the identification of four diverse CCII-termini of human hNinein isoforms, including a novel isoform 6, by differential expression in a tissue-specific manner. In a kinase assay, the CCII region of hNinein isoforms provides a differential phosphorylation site by GSK3β. In addition, either N-terminal or CCIIZ domain disruption may cause hNinein conformational change which recruits γ-tubulin to centrosomal or non-centrosomal hNinein-containing sites. Further, depletion of all hNinein isoforms caused a significant decrease in the γ-tubulin signal in the centrosome. In domain swapping, it clearly shows that the CCIIX-CCIIY region provides docking sites for γ-tubulin. Moreover, nucleation of microtubules from the centrosome is significantly affected by the overexpression of either the full-length hNinein or CCIIX-CCIIY region. Taken together, these results show that the centrosomal targeting signals of hNinein have a role not only in regulating hNinein conformation, resulting in localization change, but also provide docking sites to recruit γ-tubulin at centrosomal and non-centrosomal sites.
    In the second part of the thesis we describe another candidate, GSK3βinteraction protein (GSKIP), to characterize its functions in neuron differentiation. We use human neuroblastoma SH-SY5Y cells as a model of neuronal cell differentiation. When overexpression of GSKIP prevents neurite outgrowth from RA-mediated differentiation, this result is similar to the presence of LiCl or SB415286, an inhibitor of GSK3β. Further, GSKIP regulates the activity of GSK3β through protein-protein interactions rather than post-modulation and GSKIP may affect GSK3β on neurite outgrowth via inhibiting the specific phosphorylation site of tau. In addition to inhibition of neurite outgrowth, GSKIP overexpressed in SH-SY5Y cells also promotes cell cycle progression by analyzing cell proliferation with cell growth and MTT assay. Furthermore, GSKIP raises the level of β-catenin and cyclin D1 through inhibition of GSK3β activity in RA-mediated differentiation SH-SY5Y cells. Taken together, the data suggest that GSKIP, a dual functional molecule, is able to inhibit neurite outgrowth and promote cell proliferation via negative regulation of GSK3β activity in RA-mediated differentiation of SH-SY5Y cells.
    關鍵字(中)
  • 肝醣合成激酶3beta 的作用蛋白
  • 中心體蛋白質
  • γ-tubulin 的結合區域
  • 神經軸
  • 肝醣合成激酶3
  • 神經母細胞瘤
  • 關鍵字(英)
  • neurite
  • Glycogen synthase kinase-3
  • neuroblastoma
  • centrosomal protein
  • GSKIP
  • gamma-tubulin docking sites
  • 論文目次 TABLE OF CONTENTS
    TABLE OF CONTENTS  I
    ABSTRACT (Chinese)  1
    ABSTRACT (English)  3
    AN OVERVIEW OF THE GSK3  5
    PART I: Functional Characterization of Human Ninein Isoforms – hNinein is
    Regulated by Centrosomal Targeting Signals and Evidence for Docking
    Sites to Direct γ-Tubulin  8
    INTRODUCTION 9
    MATERIALS AND METHODS  15
    Isoform-specific PCR and RT-PCR  15
    Cloning and DNA sequencing 15
    Antibody production  16
    Cell culture, RNA interference, and transfections  17
    Immunofluorescence and microscopy  17
    Western blot analysis 18
    Immunoprecipitation and immunoblotting experiments 19
    In vitro kinase assay  20
    Microtubule regrowth experiment 20
    RESULTS  21
    Identification of four different human hNinein isoforms revealed a Novel hNinein
    Isoform  21
    Distribution of hNinein isoforms in the cell 22
    C-terminal region of three hNinein isoforms may be regulated by GSK3β
    phosphorylation  23
    Both the N- and C-terminus contributed to hNinein conformation resulting in
    γ-tubulin relocalization  23
    Four targeting domains in hNinein are sufficient for centrosome localization
    signals  25
    hNinein is associated with γ-tubulin via CCIIX-CCIIY docking sites 26
    Regrowth experiment with overexpression of full length and truncated hNinein 27
    DISCUSSION 28
    hNinein isoforms have different C-terminal coiled-coil domains  28
    Redundant or distinct functions of hNinein isoforms 29
    The distinct centrosomal localization of hNinein isoforms may be regulated by
    GSK3β phosphorylation  30
    γ-tubulin localization to the centosome is hNinein-dependent 30
    Overexpression of hNinein inhibits microtubule nucleation and cell mitosis 32
    hNinein isoforms are regulated by centrosome targeting signals and docks
    γ-tubulin to the centosomal and non-centrosomal sites 33
    PART II: GSKIP , a dual functional molecule, inhibites neurite outgrowth and
    promotes cell proliferation via negative regulation of GSK3β activity
    in retinoid acid-mediated differentiation of SH-SY5Y cells 35
    INTRODUCTION  36
    MATERIALS AND METHODS 39
    Cell culture and Differentiation  39
    Cloning and DNA Sequencing  39
    Transfection  40
    Immunofluorescence and microscopy  40
    Western blotting 41
    Cell growth cure and MTT assay  41
    RESULTS  42
    RA-mediated differentiation in human neuroblastoma SH-SY5Y cells 42
    The inhibition of GSK3β prevents neurite outgrowth from RA-mediated
    differentiation  42
    GSKIP may affects GSK3β on neurite outgrowth via phosphorylated on specific
    site of tau 43
    GSKIP overexpression promotes cell cycle progression in SH-SY5Y cells  44
    Overexpression of GSKIP raised the level of β-catenin and cyclin D1 
    REFERENCES 50
    LIST OF FIGURES
    Figure 1. Identification of a novel human hNinein isoform 65
    Figure 2. The distribution of four hNinein isoforms in cells  68
    Figure 3. Phosphorylation of four C-terminal fragments of hNinein isoforms by
    GSK3β, Aurora A and PKA  72
    Figure 4. C- and N-terminal domain disruptions of GFP-tagged hNinein isoform 5
    were over-expressed in HeLa cells  73
    Figure 5. Four centrosome localization signals in hNinein  76
    Figure 6. hNinein is associated with γ-tubulin using the CCIIX-CCIIY docking
    sites  79
    Figure 7. Microtubules regrowth assay  82
    Figure 8. Model for the structure and the role of hNinein in position, anchoring
    and microtubule nucleation by the centrosome organization 85
    Figure 9. Morphological changes in SH-SY5Y human neuroblastoma cells
    differentiated by treatment with 10μM retinoic acid for 5 days  87
    Figure 10. Inhibition of GSK3β activity blocks neurite outgrowth in SH-SY5Y
    human neuroblastoma cells  88
    Figure 11. Overexpression of GSKIP inhibits neurite outgrowth in SH-SY5Y
    human neuroblastoma cells  90
    Figure 12. GSKIP has no effects on phosphorylation of GSK3β  91
    Figure 13. GSKIP affects GSK3β to phosphorylate tau on specific site  92
    Figure 14. GSKIP overexpression promotes cell cycle progression in SH-SY5Y
    cells  93
    Figure 15. Overexpression of GSKIP increase the level of β-catenin and cyclin D1 94
    Figure 16. Overexpression of GSKIP results in cyclin D1 acumination in nucleus 95
    LIST OF TABLES
    Table 1. Summary of subcellular localization, intrinsic targeting signals, γ-tubulin
    docking site and phosphorylation site of various hNinein isoforms 96
    Table 2. Summary of different hNinein portions when overexpressed in transfected
    cells. 97
    Table 3. Summary of GSK3β inhibitors affect on neurite outgrowth in RA-mediated
    differentiation SH-SY5Y cells 98
    APPENDIX I The centrosome structure  99
    APPENDIX II The Centrosome Duplication Cycle 100
    APPENDIX III ABBREVIATIONS 101
    APPENDIX IV Antibody for immunofluorescenc 102
    APPENDIX V 103
    參考文獻 Alexander, F. (2000). Neuroblastoma. Urol. Clin. North Am. 27, 383–392,
    Andrews, P. W. (1984). Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol. 103, 285–293
    Andersen, S.S. (1999). Molecular characteristics of the centrosome. Int. Rev. Cytol. 187, 51-109.
    Baek, S. H., Kioussi, C., Briata, P., Wang, D., Nguyen, H. D., Ohgi, K. A., Glass, C. K., Wynshaw-Boris, A., Rose, D. W., and Rosenfeld, M. G. (2003). Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc. Natl. Acad. Sci. U. S. A. 100, 3245–3250
    Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995). Embryonic stem cells express neuronal properties in vitro. Dev.Biol. 168, 342–357
    Baird, D.H., Myers, K.A., Mogensen, M., Moss, D. and Baas, P.W. (2004). Distribution of the microtubule-related protein ninein in developing neurons. Neuropharmacology 47, 677- 683.
    Baron, A.T., Greenwood, T.M., Bazinet, C,W. and Salisbury, J.L.(1992). Centrin is a component of the pericentriolar lattice. Biol. Cell 76, 383–388.
    Behrens, J., von Kries, J.P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R. and Birchmeier, W. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642.
    Benedetti, F., Bernasconi, A., Lorenzi, C. (2004). A single nucleotide polymorphism in glycogen synthase kinase 3-beta promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci Lett. 355, 37-40.
    Benson, D.L. and Tanaka, H., (1998). N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neuroscience 18, 6892–6904.
    Bhat, R.V. and Budd, S.L. (2002). GSK3beta signalling: casting a wide net in Alzheimer's disease. Neurosignals. 11, 251-261.
    Biedler, J. L. and Spengler, B. A. (1976). A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture. J. natn. Cancer. Inst. 57, 683-695.
    Bornens, M. (2002). Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25-34.
    Bornens, M., Paintrand, M., Berges, J., Marty, M.C., and Karsenti, E. (1987). Structural and chemical characterization of isolated centrosomes. Cell Motil. Cytoskeleton 8, 238-249.
    Bouckson-Castaing, V., Moudjou, M., Ferguson, D.J., Mucklow, S., Belkaid, Y., Milon, G. and Crocker, P.R. (1996). Molecular characterization of ninein, a new coiled-coil protein of the centrosome. J. Cell Sci. 109, 179–190.
    Bradke, F., and Dotti, C.G. (2000). Establishment of neuronal polarity:lessons from cultured hippocampal neurons. Curr. Opin. Neurobiol. 10, 574–581.
    Brinkley, B.R. (2001). Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol. 11, 18-21.
    Bugnard, E., Zaal, K.J. and Ralston, E. (2005). Reorganization of microtubule nucleation during muscle differentiation. Cell Motil. Cytoskel. 60, 1-13.
    Cadigan, K.M., Nusse, R. (1997). Wnt signaling: a common theme inanimal development. Genes and Development 11, 3286–3305.
    Canon, E., Cosgaya, J. M., Scsucova, S. and Aranda A. (2004). Rapid Effects of Retinoic Acid on CREB and ERK Phosphorylation in Neuronal Cells. Mol. Biol. Cell 15, 5583–5592.
    Casenghi, M., Barr, F.A. and Nigg, E.A. (2005). Phosphorylation of Nlp by Plk1 negatively regulates its dynein-dynactin-dependent targeting to the centrosome. J Cell Sci. 118, 5101-5108.
    Casenghi, M., Meraldi, P., Weinhart, U., Duncan, P.I., Korner, R., and Nigg, E.A. (2003). Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5,113-125.
    Chang, P., Giddings, T.H., Winey, M., and Stearns,T. (2003). Epsilon-tubulin is required for centriole duplication and microtubule organization. Nat. Cell Biol. 5, 71-76.
    Charron, F. and Tessier-Lavigne, M. (2005). Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance.Development. 132, 2251-2262.
    Chen, C.H., Howng, S.L., Cheng, T.S., Chou, M.H., Huang, C.Y. and Hong, Y.R. (2003). Molecular characterization of human ninein protein: two distinct subdomains required for centrosomal targeting and regulating signals in cell cycle. Biochem Biophys Res Commun. 308, 975-983.
    Chretien, D., Buendia, B., Fuller, S.D., and Karsenti, E. (1997). Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120, 117-133.
    Chou, H.Y., Howng, S.L., Cheng, T.S., Hsiao, Y.L., Lieu, A.S., Loh,|J.K. Hwang, S.L., Lin, C.C., Hsu, C.M., Wang, C.H., Lee, C.I., Lu, P.J., Chou, C.K., Huang, C.Y. and Hong,Y.R. (2006). GSKIP Is Homologous to the Axin GSK3β Interaction Domain and Functions as a Negative Regulator of GSK3βBiochemistry, 45, 11379-11389.
    Crasta, K. and Surana, U. (2006). Disjunction of conjoined twins: Cdk1, Cdh1 and separation of centrosomes. Cell Div. 1,12.
    Dammermann, A. and Merdes, A. (2002). Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255-266.
    Delgehyr, N., Sillibourne, J. and Bornens, M. (2005).Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565-1575.
    Dictenberg, J.B., Zimmerman, W., Sparks, C.A., Young, A., Vidair, C., Zheng, Y., Carrington, W., Fay, F.S. and Doxsey, S.J. (1998). Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141, 163–174.
    Doxsey, S. J. (2001). Re-evaluating centrosome function. Nat. Rev. Mol. Cell Biol. 2, 688-698.
    Doxsey, S. J., Stein, P., Evans, L., Calarco, P.D. and Kirschner. M. (1994). Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 76, 639–650.
    Emamian, E.S., Hall, D., Birnbaum, M.J, Karayiorgou, M. and Gogos, J.A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 36, 131-137.
    Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Cena ,V., Gallego, C. and Comella, J. X. (2000). Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factordependent, human neuron-like cells. J. Neurochem. 75, 991–1003.
    Encinas, M., Iglesias, M., Llecha, N. and Comella, J. X. (1999). Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem. 73, 1409-1421.
    Frame, S., and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1–16
    Freed, E., Lacey, K.R., Huie, P., Lyapina, S.A., Deshaies, R.J., Stearns, T., and Jackson, P.K. (1999). Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev. 13, 2242-2257.
    Fry, A.M., Mayor, T., and Nigg, E.A. (2000). Regulating centrosomes by protein phosphorylation. Curr. Top. Dev. Biol. 49, 291-312.
    Fry, A.M., Mayor, T., Meraldi, P., Stierhof, Y.D., Tanaka, K., Nigg, E.A. (1998). C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J. Cell Biol. 141, 1563–1574.
    Fuller, S.D., Gowen, B., Reinsch, S., Sawyer, A., Buendia, B., Wepf, R. and Karsenti, E. (1995). The core of the mammalian centriole contains gamma-tubulin. Curr. Biol. 51, 384–93.
    Gorgidze, L.A. and Vorobjev, I.A. (1995). Centrosome and microtubules behavior in the cytoplasts. J. Submicrosc. Cytol. Pathol. 27, 381-389.
    Garrido, J.J., Simon, D., Varea, O. and Wandosell, F. (2007). GSK3 alpha and GSK3 beta are necessary for axon formation. FEBS Lett. 581, 1579-1586.
    Goold, R.G., and Gordon-Weeks, P.R. (2005). The MAP kinase pathway is upstream of the activation of GSK3beta that enables it to phosphorylate MAP1B and contributes to the stimulation of axon growth. Mol. Cell. Neurosci. 28, 524–534.
    Gould, T.D., Zarate, C.A. and Manji, H.K. (2004). Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J. Clin. Psychiatry. 65, 10-21.
    Grimes, C. A., and Jope, R. S. (2001). The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65, 391–426.
    Gromley, A., Jurczyk, A., Sillibourne, J., Halilovic, E., Mogensen, M., Groisman, I., Blomberg, M. and Doxsey, S.J. (2003). A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J. Cell Biol. 161, 535-545.
    Grynspan, F., Grifn, W. B., Mohan, P. S., Shea, T. B. and Nixon, R. A. (1997). Calpains and calpastatin in SH-SY5Y neuroblastoma cells during retinoic acid-induced differentiation and neurite outgrowth: comparison with the human brain calpain system. J. Neurosci. Res. 48, 181-191.
    Hagiwara, H., Ohwada, N., Aoki, T., and Takata, K. (2000). Ciliogenesis and ciliary abnormalities. Med. Electron Microsc. 33, 109-114.
    Hansen, D.V., Hsu, J.Y., Kaiser, B.K., Jackson, P.K., and Eldridge, A.G. (2002). Control of the centriole and centrosome cycles by ubiquitination enzymes. Oncogene 21, 6209-6221.
    Hartigan, J. A., and Johnson, G.V. (1999). Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway. J. Biol. Chem. 274, 21395–21401
    Helps, N.R., Luo, X., Barker. H.M. and Cohen, P.T. (2000). NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem. J. 349, 509-518.
    Hinchcliffe, E.H. and Sluder, G. (2001). "It takes two to tango": understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167-1181.
    Hong, Y.R., Chen, C.H., Chang, J.H., Wang, S.K., Sy, W.D., Chou, C.K. and Howng, S.L. (2000a). Cloning and characterization of a novel human ninein protein that interacts with the glycogen synthase kinase 3beta. Biochem Biophys Acta. 1492, 513–516.
    Hong, Y.R., Chen, C.H., Chuo, M.H., Liou, S.Y. and Howng, S.L. (2000b). Genomic organization and molecular characterization of the human ninein gene. Biochem Biophys Res Commun. 279, 989–995.
    Hung, L.Y., Tang, C.J. and Tang, T,K. (2000). Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Mol Cell Biol. 20, 7813-7825.
    Jiang, H., Guo, W., Liang, X., and Rao, Y. (2005). Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120, 123–135.
    Joshi, H.C. (1994). Microtubule organizing centers and gamma-tubulin. Curr. Opin. Cell Biol. 6, 54-62.
    Kaytor, M. D., and Orr, H. T. (2002). The GSK3 beta signaling cascade and neurodegenerative disease. Curr. Opin. Neurobiol. 12, 275–278.
    Khodjakov, A., Cole, R.W., Oakley, B.R., and Rieder, C.L. (2000). Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59-67.
    Khodjakov, A. and Rieder, C.L. (1999). The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585-596.
    Kim, W.Y., Zhou, F.Q., Zhou, J., Yokota, Y., Wang, Y.M., Yoshimura, T., Kaibuchi, K., Woodgett J.R., Anton, E.S. and Snider, W.D. (2006). Essential Roles for GSK-3s and GSK-3-Primed Substrates in Neurotrophin-Induced and Hippocampal Axon Growth. Neuron 52, 981–996
    Kilmartin J.V. (1994). Genetic and biochemical approaches to spindle function and chromosome segregation in eukaryotic microorganisms. Curr. Opin. Cell Biol.6, 50-54.
    Kioussi, C., Briata, P., Baek, S.H., Rose, D.W., Hamblet, N.S., Herman, T., Ohgi, K.A., Lin, C., Gleiberman, A., Wang, J., Brault, V., Ruiz-Lozano, P., Nguyen, H.D., Kemler, R., Glass, C.K., Wynshaw-Boris, A. and, Rosenfeld, M.G. (2002). Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111, 673–685.
    Kishida, S., Yamamoto, H. and Kikuchi, A. (2004). Wnt-3a and Dvl Induce Neurite Retraction by Activating Rho-Associated Kinase .Mol. Cell.Biol., 24, 4487–4501
    Knop, M., Pereira, G., and Schiebel, E. (1999). Microtubule organization by the budding yeast spindle pole body. Biol. Cell 91, 291-304.
    Kochanski, R.S. and Borisy, G.G. (1990). Mode of centriole duplication and distribution. J. Cell Biol. 110, 1599-1605.
    Lacey, K.R., Jackson, P.K., and Stearns, T. (1999). Cyclin-dependent kinase control of centrosome duplication. Proc. Natl. Acad. Sci. U. S. A 96, 2817-2822.
    Lavenius, E., Parrow, V., Nånberg, E., and Påhlman, S. (1994). Basic FGF and IGF-I promote differentiation of human SH-SY5Y neuroblastoma cells in culture. Growth Factors 10, 29–39.
    Lee, J.H. and Kim, K.T. (2004). Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J Neurochem. 91, 634-647.
    Leroy, K., and Brion, J. P. (1999). Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J. Chem. Neuroanat. 16, 279–293.
    Lesort, M., Jope, R. S., and Johnson, G. V. (1999). Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosinekinase. J. Neurochem. 72, 576–584.
    Logan, C.Y. and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20, 781-810.
    Lopez-Carballo, G., Moreno, L., Masia, S., Perez, P. and Barettino, D. (2002). Activation of the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway by Retinoic Acid Is Required for Neural Differentiation of SH-SY5Y Human Neuroblastoma Cells. J. Biol.Chem. 28, 25297–25304.
    Mack, G.J., Rees, J., Sandblom, O., Balczon, R., Fritzler, M.J. and Rattner, J.B. (1998). Autoantibodies to a group of centrosomal proteins in human autoimmune sera reactive with the centrosome. Arthritis Rheum. 41, 551–558.
    Mazor, M., Kawano, Y., Zhu, H., Waxman, J., Kypta, R.M. (2004). Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene. 23, 7882-7892.
    Mayor, T., Meraldi, P., Stierhof, Y.D., Nigg, E.A. and Fry, A.M. (1999). Protein kinases in control of the centrosome cycle. FEBS Lett. 452, 92–95.
    Means, A.L. and Gudas, L.J. (1995). The roles of retinoids in vertebrate development. Annu. Rev. Biochem. 64, 201–233.
    Meraldi, P. and Nigg, E.A. (2002). The centrosome cycle. FEBS Lett. 521, 9-13.
    Meraldi, P. and Nigg, E.A. (2001). Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J. Cell Sci. 114, 3749–3757.
    Middendorp, S., Paoletti, A., Schiebel, E. and Bornens, M. (1997). Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene. Proc Natl Acad Sci USA 94, 9141–9146.
    Mogensen , M.M. (1999). Microtubule release and capture in epithelial cells. Biol Cell 91, 331–341.
    Mogensen, M.M., Malik, A., Piel, M., Bouckson-Castaing, V. and Bornens, M. (2000). Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023.
    Moudjou, M., Bordes, N., Paintrand, M., and Bornens, M. (1996). gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell Sci. 109, 875-887.
    Moudjou, M., Paintrand, M., Vigues, B. and Bornens, M. (1991). A human centrosomal protein is immunologically related to basal body-associated proteins from lower eukaryotes and is involved in the nucleation of microtubules. J. Cell Biol. 115, 129–140.
    Nakagawa, Y., Yamane, Y., Okanoue, T., Tsukita, S., and Tsukita, S. (2001). Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol. Biol. Cell 12, 1687-1697.
    Nigg, E.A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2, 21–32.
    Nigg, E.A. (2002). Centrosome aberrations: cause or consequence of cancer progression? Nat.Rev. Cancer 2, 815-825.
    Oliver, T.G., Grasfeder, L.L., Carroll, A.L., Kaiser, C., Gillingham, C.L., Lin, S.M., Wickramasinghe, R., Scott, M.P. and Wechsler-Reya, R.J. (2003). Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl. Acad. Sci. U. S. A. 100, 7331–7336.
    Ou, Y.Y., Mack, G.J., Zhang, M., and Rattner, J.B. (2002). CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J. Cell Sci. 115, 1825- 1835.
    Ougolkov, A.V., Fernandez-Zapico, M.E., Savoy, D.N., Urrutia, R.A. and
    Billadeau, D.D. (2005). Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 65, 2076-2081.
    Owen, R., and Gordon-Weeks, P.R. (2003). Inhibition of glycogen synthase kinase 3beta in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones. Mol. Cell. Neurosci. 23, 626–637.
    Påhlman, S., Hoehner, J.C., Nånberg, E., Hedborg, F., Fagerström, S., Gestblom, C., Johansson, I., Larsson, U., Lavenius, E. and Ortoft, E. (1995). Differentiation and survival influences of growth factors in human neuroblastoma. Eur. J.Cancer 31, 453–458.
    Påhlman, S., Meyerson, G., Lindgren, E., Schalling, M., and Johansson, I. (1991). Insulin-like growth factor I shifts from promoting cell division to potentiating maturation during neuronal differentiation.. Proc. Natl. Acad. Sci. U. S. A. 88, 9994–9998.
    Palazzo, R.E., Vogel, J.M., Schnackenberg, B.J., Hull, D.R., and Wu, X. (2000). Centrosome maturation. Curr. Top. Dev. Biol. 49, 449-70.
    Patel, N.A., Song, S.S. and Cooper, D.R. (2006). PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells.Gene Expr. 13, 73-84.
    Pereira, G. and Schiebel, E. (1997). Centrosome-microtubule nucleation. J. Cell Sci. 110, 295-300.
    Piel, M., Meyer, P., Khodjakov, A., Rieder, C.L. and Bornens, M. (2000). The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149, 317–330.
    Piel, M., Nordberg, J., Euteneuer, U. and Bornens, M. (2001). Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553.
    Preble, A.M., Giddings, T.M., and Dutcher, S.K. (2000). Basal bodies and centrioles: their function and structure. Curr. Top. Dev. Biol. 49, 207-233.
    Raghunath, M., Patti, R., Bannerman, P., Lee, C.M., Baker, S., Sutton, L.N., Phillips, P.C. and Damodar, R.C. (2000). A novel kinase, AATYK induces and promotes neuronal differentiation in a human neuroblastoma (SH-SY5Y) cell line. Brain Res. Mol. Brain Res. 77, 151–162.
    Rapley, J., Baxter, J.E., Blot, J., Wattam, S.L., Casenghi, M., Meraldi, P., Nigg, E.A. and Fry, A.M. (2005). Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases. Mol Cell Biol. 25, 1309-1324.
    Ross, R.A., Spengler, B.A. and Biedler, J. L. (1983). Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J. natn. Cancer Inst. 71, 741-747.
    Ross, S.A., McCaffery, P.J., Drager, U.C., and De Luca, L.M. (2000). Retinoids in embryonal development. Physiol.Rev. 80, 1021–1054.
    Schatten, G. (1994). The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol. 165, 299-335.
    Schiebel, E. (2000). gamma-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation. Curr. Opin. Cell Biol. 12, 113-118.
    Schnackenberg, B.J. and Palazzo, R.E. (1999). Identification and function of the centrosome centromatrix. Biol. Cell 91, 429-438.
    Schroeder, C., Gibson, L., Zenke, M., and Beug, H. (1992). Modulation of normal erythroid differentiation by the endogenous thyroid hormone and retinoic acid receptors: a possible target for v-erbA oncogene action. Oncogene 7, 217–227.
    Schor, N. F. (1999). Neuroblastoma as a neurobiological disease. J. Neurooncol. 41, 159–166.
    Shi, S.H., Cheng, T., Jan, L.Y., and Jan, Y.N. (2004). APC and GSK-3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr. Biol. 14, 2025–2032.
    Sidell, N. (1982). Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J. Natl. Cancer Inst. 68, 589–596.
    Snyder, M. (1994). The spindle pole body of yeast. Chromosoma 103, 369-380.
    Stillwell, E.E., Zhou, J., Joshi, H.C. (2004). Human ninein is a centrosomal autoantigen recognized by CREST patient sera and plays a regulatory role in microtubule nucleation. Cell Cycle 3, 923-930.
    Sumrejkanchanakij, P., Eto, K., and Ikeda, M. A. (2006). Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells. Biochem. Biophys. Res. Commun. 340, 302–308.
    Sumrejkanchanakij, P., Tamamori-Adachi, M., Matsunaga, Y., Eto, K., and
    Ikeda, M. A. (2003). Role of cyclin D1 cytoplasmic sequestration in the survival of postmitotic neurons. Oncogene 22, 8723–8730.
    Sutterlin, C., Hsu, P. and Mallabiabarrena, A. (2002). Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109, 359-369.
    Suzui, M., Masuda, M., Lim, J. T., Albanese, C., Pestell, R. G., and
    Weinstein, I. B. (2002). Growth inhibition of human hepatoma cells by acyclic retinoid is associated with induction of p21(CIP1) and inhibition of expression of cyclin D1. Cancer Res. 62, 3997–4006.
    Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H. and Ono, Y. (2002). Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol. Cell Biol. 13, 3235-3245.
    Takehashi, M., Yasutake, K. and Tomizawa, K. (1999). Lithium inhibits neurite growth and tau protein kinase I/glycogen synthase kinase-3beta-dependent phosphorylation of juvenile tau in cultured hippocampal neurons. J. Neurochem. 73, 2073-2083.
    Tosetti, P., Taglietti, V. and Toselli, M. (1998). Functional changes in potassium conductances of the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J. Neurophysiol. 79, 648-658.
    Vignali, G., Niclas, J., Sprocati, M. T., Vale, R. D., Sirtori, C. and Navone, F. (1996). Differential expression of ubiquitous and neuronal kinesin heavy chains during differentiation of human neuroblastoma and PC12 cells. Eur. J. Neurosci. 8, 536-544.
    Vorobjev, I.A. and Chentsov, Y. (1982). Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938-949.
    Vorobjev, I.A. and Nadezhdina, E.S. (1987). The centrosome and its role in the organization of microtubules. Int. Rev. Cytol. 106, 227-923.
    Wagman, A.S., Johnson, K.W. and Bussiere, D.E. ( 2004). Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr. Pharm. Des. 10, 1105-1137.
    Willert, J., Epping, M., Pollack, J., Brown, P. and Nusse, R. (2002). A Transcriptional Response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. 2, 8.
    Witczak, O., Skalhegg, B.S., Keryer, G., Bornens, M., Tasken, K., Jahnsen, T. and Orstavik, S. (1999). Cloning and characterization of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450. EMBO J. 1, 1858-1868.
    Woodgett, J.R. (1990). Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBOJ. 9, 2431- 2438.
    Woodgett, J.R. (2003). Physiological roles of glycogen synthase kinase-3: potential as a therapeutic target for diabetes and other disorders. Curr. Drug. Targets Immune Endocr. Metabol. Disord. 3, 281-290.
    Yap, A.S., Brieher, W.M. and Gumbiner, B.M. (1997). Molecular and functional analysis of cadherin-based adherens junctions. Annual Review of Cell and Developmental Biology 13, 119–146.
    Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A., and Kaibuchi, K. (2005). GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137–149.
    Zhang, T.F, Yu, S.Q., Guan, L.S., Wang, Z.Y. (2003). Inhibition of breast cancer cell growth by the Wilms' tumor suppressor WT1 is associated with a destabilization of beta-catenin. Anticancer Res. 23, 3575-3584.
    Zheng, Y., Jung, M.K. and Oakley, B.R. (1991). Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65, 817–823.
    Zechner, D., Fujita, Y., Hülsken, J., Müller, T., Walther, I., Taketo, M.M., Crenshaw, E.B., Birchmeier, W. and Birchmeier, C. (2003). beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406-418.
    Zile, M. H. (1998). Vitamin A and embryonic development: an overview. J. Nutr. 128, 455S–458S.
    口試委員
  • 卓忠隆 - 召集委員
  • 呂佩融 - 委員
  • 張德卿 - 委員
  • 張文粲 - 委員
  • 楊倍昌 - 委員
  • 洪義人 - 指導教授
  • 許清玫 - 指導教授
  • 口試日期 2007-07-30 繳交日期 2007-09-10

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫