論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-10-12
校外 Off-campus:開放下載的時間 available 2025-10-12
論文名稱 Title |
運用科技接受模式探討醫療相關人員使用藥品傳送優化系統之意圖 Applying The Technology Acceptance Model To Explore Healthcare Professionals' Intention To Use The Optimizing Drug Delivery System |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
73 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-09-15 |
繳交日期 Date of Submission |
2022-10-12 |
關鍵字 Keywords |
科技接受模式、藥品傳送優化系統、立即藥囑、病患用藥安全、條碼科技 Technology Acceptance Model(TAM), Drug Delivery Optimization System, STAT Medication, Patient Medication Safety, Barcode Technology |
||
統計 Statistics |
本論文已被瀏覽 309 次,被下載 0 次 The thesis/dissertation has been browsed 309 times, has been downloaded 0 times. |
中文摘要 |
住院病人的用藥品質與安全長久以來一直受到重視,因為醫療疏失事件中,與藥物相關的錯誤事件佔據極高的比例,許多醫療機構藉由系統層層把關及偵測錯誤,特別是在藥物給予的正確性上置入了許多醫療資訊技術與設備,但快速且流暢的將醫師處方後的藥物送至病人端卻是機構疏忽或較少關注的一環。條碼技術(Bar-code)在醫療上發展成熟且普遍,常被運用在醫療產業的自動化技術之一,在醫院管理者提供資源支持下,促使院內資訊系統以條碼串聯部門間業務,以超商到貨取貨通知為發想而完成藥品傳送優化系統的創新設備,讓把關病人用藥安全的防護網更趨完整。 本研究測試對象為南部醫學中心有機會使用到系統之醫療相關人員,以科技接受模式為基本架構並加入經先前研究驗證過之變數做為本次探討影響人員「藥品傳送優化系統」使用意圖之重要因素。問卷分為兩個版本,對象分別為醫療人員及勤務人員,問卷方式以電子及紙本同時進行。醫療人員回收有效問卷180份,有效回收率90%;勤務人員有效問卷58份,有效回收率85.5%。結果發現,感知有用性、管理者支持對醫療人員及勤務人員使用藥品傳送優化系統的使用意圖有顯著影響,且呈現中高度正相關。信任對於醫療人員使用系統的行為意圖結果亦有顯著影響。 期待在藥品傳送上的創意構想結合科技技術,使人員的服務模式更精進。但要達成預期效益,除了在功能品質上應符合使用者需求認知進而影響到使用者態度外,最重要的不外乎是提升醫療相關人員對系統的涉入意願,使系統的使用融入日常工作中。 |
Abstract |
The quality of medication and safety of patients have long been concerned. In some medical errors, the medication-related errors account for an extremely high percentage. Lots of medical institutions use the system to detect the errors, especially for the accuracy of the provision of medicine which are put various medical resources and equipment. However, the rapid and smooth delivery of medications to the patients after the physician's prescription is neglected or concerned less. The development of Bar-code is mature and widespread in medical area which is used in the automatic technology of medical industry. With the support of resources provided by hospital- management, Bar-code is used to link inter-departmental operations in the hospital information system. Also, this technology is used to complete the drug delivery optimization system with the idea of arrival notifications of convenient store, thus completing the protective net for patients’ medical safety. In this study, the test subjects are healthcare related personnel who have the opportunity to use the system at the southern medical center. The technology acceptance model is a basic structure which is added the variables validated by previous studies to be the important factors of the intention of the personnel to use the “Drug Delivery Optimization System”. The questionnaire has two versions,one is for healthcare professionals and the other is for the drug delivery staffs. The questionnaire is taken by IE and paper at the same time. A total of 268 questionnaires were distributed with 180 and 58 valid returned questionnaires for the healthcare professionals and the drug delivery staffs ,the rate of effectiveness is 90% and 85.5%. The result shows perceived usefulness and management support have significant positive effect on intention to use by both healthcare professionals and the drug delivery staffs. Trust also has significant positive effect on the intension to use “Drug Delivery Optimization System” by the healthcare professionals. Hoping that the creative idea in drug delivery combining technology can promote the service mode. However, to achieve the expected benefits, apart from the functional quality that meets the users' needs and cognition, which in turn affects the users' attitude, the most important thing is to enhance the willingness of healthcare related personnel to get involved in the system, so that the use of the system can be integrated into daily life. |
目次 Table of Contents |
學位論文審定書 i 中文摘要 ⅱ 英文摘要 ⅲ 圖次 vii 表次 viii 第一章緒論 1 第一節 研究背景 1 第二節 研究動機 4 第三節 研究目的 5 第二章文獻探討 7 第一節 即時藥囑 (STAT Medication ) 7 第二節 科技接受模式(Technology Acceptance Model) 8 第三節 預防醫療疏失之資訊技術應用 錯誤! 尚未定義書籤。 第三章研究方法 15 第一節 研究架構 16 第二節 研究假設 16 第三節 問卷設計與構面變數定義與衡量 17 第四節 專家效度與問卷前測 18 第五節 分析方法 21 第四章資料分析與研究結果 23 第一節 描述性統計 23 第二節 推論性統計 28 第三節 複迴歸分析 42 第五章結論與建議 46 第一節 討論 46 第二節 研究限制與建議 48 第三節 研究發現與貢獻 49 參考文獻 50 附錄一 本研究問卷(一) 57 附錄二 本研究問卷(二) 58 附錄三 本研究專家效度 59 圖次 圖 二 1最初的科技接受模式 10 圖 二 2預防醫療疏失之資訊技術應用 11 圖 二 3藥品傳送優化系統功能 15 圖 三 1本研究架構 16 表次 表 三 1本研究假設 17 表 三 2 兩份問卷專家效度CVI(content validity index)計算值 18 表 三 3前測信度分析Cronbach’s α值 19 表 三 4人口學資料操作型定義 19 表 三 5研究架構構面定義 20 表 四 1醫療人員樣本次數分配情形 24 表 四 2勤務人員樣本次數分配情形 26 表 四 3醫療人員之構面敘述性統計 27 表 四 4勤務人員之構面敘述性統計 27 表 四 5醫療人員性別與構面之關係 28 表 四 6醫療人員教育程度與構面之關係 28 表 四 7醫療人員機構職稱與各構面之關係 29 表 四 8醫療人員職稱身分與構面之關係 29 表 四 9醫療人員主管職與構面之關係 30 表 四 10勤務人員性別與構面之關係 31 表 四 11勤務人員教育程度與構面之關係 31 表 四 12勤務人員職稱身分與構面之關係 32 表 四 13勤務人員主管職與構面之關係 32 表 四 14醫療人員人口學特性與感知有用性之單因子變異分析 33 表 四 15醫療人員人口學特性與感知易用性之單因子變異分析 34 表 四 16醫療人員人口學特性與感知易用性之單因子變異分析 34 表 四 17醫療人員人口學特性與信任之單因子變異分析 35 表 四 18醫療人員人口學特性與管理者支持之單因子變異分析 35 表 四 19醫療人員人口學特性與使用意圖之單因子變異分析 36 表 四 20勤務人員人口學特性與感知有用性之單因子變異分析 37 表 四 21勤務人員人口學特性與感知易用性之單因子變異分析 37 表 四 22勤務人員人口學特性與主觀意識之單因子變異分析 38 表 四 23勤務人員人口學特性與信任之單因子變異分析 38 表 四 24勤務人員人口學特性與管理者支持之單因子變異分析 39 表 四 25勤務人員人口學特性與使用意圖之單因子變異分析 39 表 四 26相關係數判別標準 40 表 四 27醫療人員皮爾森相關分析 40 表 四 28勤務人員皮爾森相關分析 41 表 四 29醫療人員職稱與科技接受構面對使用意圖之迴歸分析 42 表 四 30醫療人員職稱與科技接受構面逐步迴歸分析結果 42 表 四 31勤務人員主管職與科技接受構面對使用意圖之迴歸分析 43 表 四 32勤務人員主管職與科技接受構面對使用意圖經逐步迴歸分析後結果 43 表 四 33醫療人員人口學變項對於構面的表現 44 表 四 34勤務人員人口學變項對於構面的表現 45 表 四 35本研究之假設驗證 45 |
參考文獻 References |
Abbasi, M. S., Tarhini, A., Hassouna, M., & Shah, F. (2015). Social, organizational, demography and individuals’ technology acceptance behaviour: a conceptual model. European Scientific Journal, 11(9), 48-76. Abdelaziz, H., Richardson, S., Walsh, K., Nodzon, J., & Schwartz, B. (2016). Evaluation of STAT medication ordering process in a community hospital. Pharmacy Practice (Granada), 14(2),0-0. Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS Quarterly, 227-247. Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391. Agency, N. P. S. (2010). Reducing harm from omitted and delayed medicines in hospital. In: National Patient Safety Agency London. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. Azjen, I. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs. Bates, D. W., Leape, L. L., Cullen, D. J., Laird, N., Petersen, L. A., Teich, J. M., . . . Seger, D. L. (1998). Effect of Computerized Physician Order Entry and a Team Intervention on Prevention of Serious Medication Errors. JAMA, 280(15), 1311-1316. doi:10.1001/jama.280.15.1311 Catherine Tymkiw,(2022). How Shopping Habits Changed Due to COVID-19. Retrieved August28,2022,from (investopedia.com) Chau, P. Y., & Hu, P. J.-H. (2002). Investigating healthcare professionals’ decisions to accept telemedicine technology: an empirical test of competing theories.Information & Management, 39(4), 297-311. Chen, S.-C., Shing-Han, L., & Chien-Yi, L. (2011). Recent related research in technology acceptance model: A literature review. Australian Journal of Business And Management Research, 1(9), 124. Chin, R. F., Neville, B. G., Peckham, C., Wade, A., Bedford, H., & Scott, R. C. (2008). Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. The Lancet Neurology, 7(8), 696-703. Choi, W. J., Son, D. G., Yoon, H. K., Hwang, H. J., Park, E. J., Lee, S. Y., . . . Oh, C. G. (2022). Improving order-to-antibiotic time by operating an automated dispensing cabinet system in the emergency medical center. Journal of The Korean Society of Emergency Medicine, 33(2), 203-210. Clark, J. S., & Klauck, J. A. (2003). Recording pharmacists’ interventions with a personal digital assistant. American Journal of Health-System Pharmacy, 60(17), 1772-1774. Classen, D. C. (1998). Clinical Decision Support Systems to Improve Clinical Practice and Quality of Care. JAMA, 280(15), 1360-1361. doi:10.1001/jama.280.15.1360 Crawford, S. Y., Grussing, P. G., Clark, T. G., & Rice, J. A. (1998). Staff attitudes about the use of robots in pharmacy before implementation of a robotic dispensing system. American Journal of Health-System Pharmacy, 55(18), 1907-1914. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. doi:10.2307/249008 Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95. Egea, J. M. O., & González, M. V. R. (2011). Explaining physicians’ acceptance of EHCR systems: An extension of TAM with trust and risk factors. Computers In Human Behavior, 27(1), 319-332. Ehteshami, A., Rezaei, P., Tavakoli, N., & Kasaei, M. (2013). The role of health information technology in reducing preventable medical errors and improving patient safety. International Journal of Health System and Disaster Management, 1(4), 195. Ehteshami, A., Sadoughi, F., Ahmadi, M., & Kashefi, P. (2013). Intensive care information system impacts. Acta Informatica Medica, 21(3), 185. Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2). Freeman, R., McKee, S., Lee-Lehner, B., & Pesenecker, J. (2013). Reducing interruptions to improve medication safety. Journal of Nursing Care Quality, 28(2), 176-185. Goswami, A., & Dutta, S. (2015). Gender differences in technology usage—A literature review. Open Journal of Business and Management, 4(1), 51-59. Hogan, J., Grant, G., Kelly, F., & O'Hare, J. (2020). Factors influencing acceptance of robotics in hospital pharmacy: a longitudinal study using the Extended Technology Acceptance Model. International Journal of Pharmacy Practice, 28(5), 483-490. Holden, R. J., Brown, R. L., Scanlon, M. C., & Karsh, B.-T. (2012). Pharmacy workers’ perceptions and acceptance of bar-coded medication technology in a pediatric hospital. Research in Social and Administrative Pharmacy, 8(6), 509-522. Igbaria, M. (1990). End-user computing effectiveness: A structural equation model. Omega, 18(6), 637-652. Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. L. (1997). Personal computing acceptance factors in small firms: a structural equation model. MIS Quarterly, 279-305. Iskandar, Y. H. P., Ariff, A. M., & Gilbert, L. (2022). Investigating Emergency Department Healthcare Professionals’Intention to Use the Poison Information System. Malaysian Journal of Medicine and Health Sciences (eISSN 2636-9346) Kaushal, R., Barker, K. N., & Bates, D. W. (2001). How can information technology improve patient safety and reduce medication errors in children's health care? Archives of Pediatrics & Adolescent Medicine, 155(9), 1002-1007. Joey Sweeney,(2022) Guidelines aim to improve automated dispensing cabinet safety.Retrieved August 31,2022,from https://www.pharmacytoday.org Kohn, L. T., Corrigan, J., & Donaldson, M. S. (2000). Institute of Medicine. Committee on Quality of Health Care in America. To Err Is Human: Building a Safer Health System. Kumar, A., Roberts, D., Wood, K. E., Light, B., Parrillo, J. E., Sharma, S., . . . Taiberg, L. (2006). Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical Care Medicine, 34(6), 1589-1596. Landauer, T. K. (1995). The trouble with computers: Usefulness, Usability, and Productivity: MIT press. Liang, C., Gu, D., Tao, F., Jain, H. K., Zhao, Y., & Ding, B. (2017). Influence of mechanism of patient-accessible hospital information system implementation on doctor–patient relationships: A service fairness perspective. Information & Management, 54(1), 57-72. Maddock, J., & Hanson, L. (1993). Application of quality improvement techniques to the reduction of turnaround time for" STAT" and" ASAP" orders. Hospital Pharmacy, 28(7), 640-644. Manojlovich, M., Chase, V. J., Mack, M., Conroy, M. K., Belanger, K., Zawol, D., . . . Viglianti, E. (2014). Using A3 thinking to improve the STAT medication process. Journal of Hospital Medicine, 9(8), 540-544. Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191. McAllister, D. J. (1995). Affect-and cognition-based trust as foundations for interpersonal cooperation in organizations. Academy of Management Journal, 38(1), 24-59. McElhinney, J., & Heffernan, O. (2003). Using clinical risk management as a means of enhancing patient safety: the Irish experience. International Journal of Health Care Quality Assurance. Meyer, G. E., Brandell, R., Smith, J. E., Milewski Jr, F. J., Brucker Jr, P., & Coniglio, M. P. (1991). Use of bar codes in inpatient drug distribution. American Journal of Hospital Pharmacy, 48(5), 953-966. Mitchell, P. (2008). Defining Patient Safety and Quality Care. Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Agency for Healthcare Research and Quality (US). Morris, M. G., Venkatesh, V., & Ackerman, P. L. (2005). Gender and age differences in employee decisions about new technology: An extension to the theory of planned behavior. IEEE Transactions on Engineering Management, 52(1), 69-84. Nagar, S., & Davey, N. (2015). Reducing avoidable time delays in immediate medication administration - learning from a failed intervention. BMJ Qual Improv Rep, 4(1). doi:10.1136/bmjquality.u206468.w2612 Nold, E. G., & Williams, T. C. (1985). Bar codes and their potential applications in hospital pharmacy. American Journal of Hospital Pharmacy, 42(12), 2722-2732. Pai, F.-Y., & Huang, K.-I. (2011). Applying the technology acceptance model to the introduction of healthcare information systems. Technological Forecasting and Social Change, 78(4), 650-660. Paoletti, R. D., Suess, T. M., Lesko, M. G., Feroli, A. A., Kennel, J. A., Mahler, J. M., & Sauders, T. (2007). Using bar-code technology and medication observation methodology for safer medication administration. American Journal of Health-System Pharmacy, 64(5), 536-543. Patel, V., & Quinn, G. (2022). Improving the supply of critical medicines from pharmacy to reduce the delay in medicines administration on wards. BMJ Open Quality, 11(1), e001417. Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Richness versus parsimony in modeling technology adoption decisions—understanding merchant adoption of a smart card-based payment system. Information Systems Research, 12(2), 208-222. Poon, E. G., Cina, J. L., Churchill, W., Patel, N., Featherstone, E., Rothschild, J. M., . . . Gandhi, T. K. (2006). Medication dispensing errors and potential adverse drug events before and after implementing bar code technology in the pharmacy. Annals of Internal Medicine, 145(6), 426-434. Prasetyo, Y. T., & Fuente, D. G. D. D. (2020). Determinant factors affecting customer satisfaction among Filipinos in Lazada online shopping during COVID-19 pandemic: A structural equation modeling approach. Paper presented at the 2020 7th International Conference on Frontiers of Industrial Engineering (ICFIE). Rajak, M., & Shaw, K. (2021). An extension of technology acceptance model for mHealth user adoption. Technology in Society, 67, 101800. Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management, 44(1), 90-103. Sharma, R., & Yetton, P. (2003). The contingent effects of management support and task interdependence on successful information systems implementation. MIS Quarterly, 533-556. Stephen, G., Moran, D., Broderick, J., Shaikh, H. A., Tschudy, M. M., Connors,Cheryl MS, RN;Williams, Tammy MHA; Pham, Julius C. MD, PHD (2017).A Quality Improvement Intervention Reduces the Time to Administration of Stat Medications.Pediatr Qual Saf, 2(3), e021. doi:10.1097/pq9.0000000000000021 Straub, D., Keil, M., & Brenner, W. (1997). Testing the technology acceptance model across cultures: A three country study. Information & Management, 33(1), 1-11. Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-computer studies, 64(2), 53-78. Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. Venkatesh, V., & Morris, M. G. (2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 115-139. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. Vitari, C., & Ologeanu-Taddei, R. (2018). The intention to use an electronic health record and its antecedents among three different categories of clinical staff. BMC Health Services Research, 18(1), 1-9. Wideman, M. V., Whittler, M. E., & Anderson, T. M. (2005). Barcode medication administration: Lessons learned from an intensive care unit implementation.Retrieved August,2022,from (dtic.mil) Williams, L. L. (2005). Impact of nurses' job satisfaction on organizational trust. Health Care Management Review, 30(3), 203-211. Wong, Y.-T., Ngo, H.-Y., & Wong, C.-S. (2003). Antecedents and outcomes of employees' trust in Chinese joint ventures. Asia Pacific Journal of Management, 20(4), 481-499. Wu, J.-H., Shen, W.-S., Lin, L.-M., Greenes, R. A., & Bates, D. W. (2008). Testing the technology acceptance model for evaluating healthcare professionals' intention to use an adverse event reporting system. International Journal for Quality in Health Care, 20(2), 123-129. doi:10.1093/intqhc/mzm074 Wu, J.-H., Wang, S.-C., & Lin, L.-M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International Journal of Medical Informatics, 76(1), 66-77. Yoo, S., Lim, K., Jung, S. Y., Lee, K., Lee, D., Kim, S., . . . Hwang, H. (2022). Examining the adoption and implementation of behavioral electronic health records by healthcare professionals based on the clinical adoption framework. BMC Medical Informatics and Decision Making, 22(1), 1-9. Yourstone, S. A., & Smith, H. L. (2002). Managing system errors and failures in health care organizations: suggestions for practice and research. Health Care Management Review, 50-61. 方崇雄, 張肅婷, & 陳冠利. (2011). 醫療產業中階主管重要職能之研究-應用灰關聯分析法. 未來流通研究所(2020)。台灣電商物流產業競爭。2022.8.28取自未來流通網址(mirai.com.tw) 李亭亭, & 施玉珊. (2009). 運用創新擴散理論於促進護理資訊系統之推展. [Using Innovation Diffusion Theory to Improve Implementation of Nursing Information Systems]. 護理雜誌, 56(3), 18-22. doi:10.6224/jn.56.3.18 胡雅姿、王崇任、羅凱薰、林育成&何岱爭. (2008).藥袋條碼化改善住院藥品收發之可行性研究 徐秉裕&蘇慧真. (2015).運用條碼系統降低病房藥品遺失率 陳瑋慧、廖柏夷&胡珮欣. (2007).臨時給藥醫囑執行效率之改善方案.榮總護理. doi:10.6142/VGHN.24.4.371 衛生福利部(2020)。台灣病人安全通報資料 。取自台灣病人安全資訊網址2020年TPR年度報表_online.pdf (mohw.gov.tw) |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2025-10-12 校外 Off-campus:開放下載的時間 available 2025-10-12 您的 IP(校外) 位址是 3.15.190.254 現在時間是 2025-04-18 論文校外開放下載的時間是 2025-10-12 Your IP address is 3.15.190.254 The current date is 2025-04-18 This thesis will be available to you on 2025-10-12. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2025-10-12 |
QR Code |