論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2034-10-13
校外 Off-campus:開放下載的時間 available 2034-10-13
論文名稱 Title |
複合磁場調控技術於電磁定位系統精準度優化之開發 Development of Complex Magnetic Field Regulation Technology for Precision Optimizations of Electromagnetic Positioning Systems |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
116 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-09-27 |
繳交日期 Date of Submission |
2024-10-13 |
關鍵字 Keywords |
電磁定位追蹤系統、時變複合磁場、電磁感應、磁場梯度調控、均勻設計法 Electromagnetic positioning tracking system, Time-varying complex magnetic field, Electromagnetic induction, Magnetic field gradient regulation, Uniform design |
||
統計 Statistics |
本論文已被瀏覽 52 次,被下載 0 次 The thesis/dissertation has been browsed 52 times, has been downloaded 0 times. |
中文摘要 |
本研究主旨在提升電磁定位追蹤系統 (Electromagnetic tracking system, EMT) 定位精準度,其操作原理是利用複合交流電磁場發射單元 (Field generator, FG) 在磁場空間內確立磁感測單元(整合器械)的感應訊號來推算定位資訊,因此具備高追蹤精度的特點。能夠透過感測單元結合內視鏡,EMT 系統可以實現體內和管腔組織的定位和追蹤,並提供即時動態的醫療影像追蹤。但在初步測試時,觀察到時變磁場和感測器訊號品質會影響系統定位準確度和操作範圍,例如系統邊緣磁場較弱、校正品質以及訊號雜訊比 (Signal-to-noise ratio, SNR) 等問題。為此本研究提出改善方案,來提高系統精準度與擴大操作體積,並增加後續磁場發射器設計靈活性和可調節性;(1) 首先透過驅動頻率均勻配置,來初步驗證使複合磁場均勻化,能降低系統定位誤差;(2) 並透過發射線圈傾斜設計,來進一步調控操作空間內複合磁場梯度變化,使感測線圈於任意位置,皆能接收完整的磁通量訊號;(3) 並聯發射線圈設計來增加磁場強度以及提升採樣頻率來精準描述訊號所有細節,以此先行驗證線圈設計與訊號處理對於提升系統定位精準度的影響;(4) 在發射線圈傾斜設計部分,本研究提出一套設計流程,包含發射線圈建模程序使線圈設計自由度最大化、EMT simulator模擬磁場分布、感測器之磁通量與定位誤差趨勢,以及透過均勻實驗設計法使FG傾斜配置最佳化,並建立標準校正程序以減少系統誤差;(5) 經過優化後系統在252*252*180 mm3空間內,傾斜發射器整體定位平均誤差優於平面發射器約15% (於採樣頻率200 kHz下),並且改善系統邊緣定位誤差約降低13%。最後帶入多項式插值法將定位誤差引入一個補償量,將失真位移補償回正確位置,使系統達到了位置誤差1.73 mm、方向誤差小於1°的高精度定位效果。 |
Abstract |
The main purpose of this study is to improve the positioning accuracy of the Electromagnetic Tracking System (EMT), which operates by using sensing signals from the magnetic sensing unit (integrating device) generated by the field generator (FG) in a complex alternating current (AC) magnetic field to deduce positioning information. This system is known for its high tracking accuracy. By combining the sensing unit with an endoscope, the EMT system can achieve localization and tracking of intracorporeal and luminal tissues and provide real-time dynamic medical image tracking. However, in preliminary tests, it was observed that time-varying magnetic fields and sensor signal quality affect the positioning accuracy and operating range of the system, such as the weak magnetic field at the system edge, the calibration quality, and the signal-to-noise ratio (SNR). In order to improve the system accuracy and expand the operating volume, and to increase the flexibility and adjustability of the subsequent magnetic field transmitter design, this study proposes the following improvement schemes: (1) firstly, through the driving frequency uniformity configuration, it is initially proved that the homogenization of the complex magnetic field can reduce the system positioning error; (2) through the design of the tilting of the transmitting coil, it can be used to further regulate the change of the gradient of the complex magnetic field in the operating space, so that the coil can receive a complete signal from any position in the system, and can be used for the operation of the system. (3) The coils are designed to increase the magnetic field strength and increase the sampling frequency to accurately describe all the details of the signals, so as to verify the effects of the coil design and signal processing on improving the positioning accuracy of the system; (4) In the tilted design of the coils, this study proposes a set of design procedures, which include a coil modelling procedure to maximize the freedom of coil design, an EMT simulator to simulate the magnetic field distribution, the magnetic flux of the sensor and the trend of positioning error, and a homogeneous experimental design method to optimize the FG tilting configuration, and the establishment of a standard calibration procedure to reduce the system error; (5) After system optimization, the overall average positioning error of the tilting transmitter in a 252*252*180 mm³ space is reduced by 15% compared to the flat transmitter (at a sampling frequency of 200 kHz), and the system's edge positioning error is improved by approximately 13%. |
目次 Table of Contents |
目錄 論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 第二章 文獻探討 4 2.1 手術導航系統 4 2.2 電磁定位追蹤系統 9 2.3 電磁定位精準度測試 16 2.4 均勻實驗設計法 19 第三章 研究流程與測試方法 21 3.1 電磁定位系統架構 22 3.1.1 系統驅動控制單元 23 3.1.2 磁場發射線器雛形 25 3.1.3 感應線圈規格 29 3.1.4 定位系統操作空間訂定 30 3.2 複合磁場發射器建模與最佳化設計 31 3.2.1 EMT系統發射器理論磁場建立 31 3.2.2 發射器傾角最佳化設計 32 3.2.3 快速模型整合程序與EMT Simulator預模擬 39 3.3 電磁定位系統追蹤精準度測試 42 3.3.1 EMT系統校正規範 42 3.3.2 靜態定位準度測試 43 3.3.3 旋轉角度測試 45 3.3.4 尖點校正補償與ASTM規範精度測試 47 3.3.5 插值非線性補償法 49 第四章 結果與討論 51 4.1 EMT系統訊號穩定性 51 4.2 EMT系統發射線圈最佳化配置分析 52 4.2.1 系統驅動頻率配置與發射線圈改善 52 4.2.2 定位系統理論磁場建模 56 4.2.3 均勻設計法最佳化結果 61 4.2.4 EMT simulator模擬系統定位誤差結果 65 4.3 EMT系統定位精準度測試 69 4.3.1 定位系統校正結果 69 4.3.2 靜態定位準確度測試結果 71 4.3.3 系統方向角度定位追蹤結果 79 4.3.4 系統ASTM定位精度測試結果 82 4.4 FPGA系統定位比較與EMT系統結合可視化介面應用 87 第五章 結論與未來展望 91 5.1 結論 91 5.2 未來展望 92 參考文獻 93 附錄 99 |
參考文獻 References |
[1] 吳明倫. (2022). 屏蔽效應與調控磁場性能提升電磁定位精準度(碩士論文). 國立中山大學. [2] Birkfellner, W., Watzinger, F., Wanschitz, F., Ewers, R., & Bergmann, H. (1998). Calibration of tracking systems in a surgical environment. IEEE transactions on medical imaging, 17(5), 737-742. [3] Franz, A. M., Haidegger, T., Birkfellner, W., Cleary, K., Peters, T. M., & Maier-Hein, L. (2014). Electromagnetic tracking in medicine--a review of technology, validation, and applications. IEEE Trans Med Imaging, 33(8), 1702-1725. [4] Skyquest. (2024). Global Surgical Navigation Systems Market. [Online]. Available: https://www.skyquestt.com/report/surgical-navigation-systems-market [5] Grand View Research. (2019). 全球電磁手術導航系統市值 [6] Geist, E., & Shimada, K. (2011). Position error reduction in a mechanical tracking linkage for arthroscopic hip surgery. International journal of computer assisted radiology and surgery, 6, 693-698. [7] Chmarra, M. K., Grimbergen, C. A., & Dankelman, J. (2007). Systems for tracking minimally invasive surgical instruments. Minim Invasive Ther Allied Technol, 16(6), 328-340. [8] Sorriento, A., Porfido, M. B., Mazzoleni, S., Calvosa, G., Tenucci, M., Ciuti, G., & Dario, P. (2019). Optical and electromagnetic tracking systems for biomedical applications: A critical review on potentialities and limitations. IEEE reviews in biomedical engineering, 13, 212-232. [9] Poulin, F., & Amiot, L.-P. (2002). Interference during the use of an electromagnetic tracking system under OR conditions. Journal of biomechanics, 35(6), 733-737. [10] Fisher, D., Leftwich, R., & Yates, H. (1966). Survey of infrared trackers. Applied Optics, 5(4), 507-515. [11] Ribo, M. (2001). State of the art report on optical tracking. Vienna Univ. Technol., Vienna, Austria, Tech. Rep, 25, 2001. [12] Cleary, K., & Peters, T. M. (2010). Image-guided interventions: technology review and clinical applications. Annual review of biomedical engineering, 12(1), 119-142. [13] Korak, G., & Kucera, G. (2015). Optical tracking system. International Journal of Electronics and Telecommunication, 61(2), 165-170. [14] Kalmus, H. P. (1962). A new guiding and tracking system. IRE Transactions on Aerospace and Navigational Electronics,(1), 7-10. [15] Ren, H., & Sun, J. (2018). Electromagnetic Actuation and Sensing in Medical Robotics. Springer,1-10. [16] O’Donoghue, K., Eustace, D., Griffiths, J., O’Shea, M., Power, T., Mansfield, H., & Cantillon-Murphy, P. (2014). Catheter position tracking system using planar magnetics and closed loop current control. IEEE Transactions on Magnetics, 50(7), 1-9. [17] Plotkin, A., Shafrir, O., Paperno, E., & Kaplan, D. M. (2010). Magnetic eye tracking: A new approach employing a planar transmitter. IEEE transactions on biomedical engineering, 57(5), 1209-1215. [18] Plotkin, A., Paperno, E., Vasserman, G., & Segev, R. (2008). Magnetic tracking of eye motion in small, fast-moving animals. IEEE Transactions on Magnetics, 44(11), 4492-4495. [19] Plotkin, A., & Paperno, E. (2003). 3-D magnetic tracking of a single subminiature coil with a large 2-D array of uniaxial transmitters. IEEE Transactions on Magnetics, 39(5), 3295-3297. [20] Wang, W., Hu, C., Lin, W., & Bao, J. (2012). An improved PSO-based algorithm for extracting week coupling AC signal in electromagnetic localization system. 2012 IEEE International Conference on Automation and Logistics, 623-627. [21] Raab, F. H., Blood, E. B., Steiner, T. O., & Jones, H. R. (1979). Magnetic position and orientation tracking system. IEEE Transactions on Aerospace and Electronic systems, (5), 709-718. [22] NDI. (2020). NDI Aurora EM Tracking System. [Online]. Available: https://www.ndigital.com/electromagnetic-tracking-technology/aurora/aurora-field-generators/. [23] Pcbcart. Relationship between Copper Weight, Trace Width and Current Carrying Capacity. [Online]. Available: https://www.pcbcart.com/article/content/copper-trace-and-capacity-relationship.html. [24] Hummel, J. B., Bax, M. R., Figl, M. L., Kang, Y., Maurer Jr, C., Birkfellner, W. W., Bergmann, H., & Shahidi, R. (2005). Design and application of an assessment protocol for electromagnetic tracking systems. Medical physics, 32(7), 2371-2379. [25] Veran Medical. SPINDrive 2.0. [Online]. Available: https://www.veranmedical.com.tw/always-ontiptracked/. [26] Eberhardt, R., Anantham, D., Herth, F., Feller-Kopman, D., & Ernst, A. (2007). Electromagnetic navigation diagnostic bronchoscopy in peripheral lung lesions. Chest, 131(6), 1800-1805. [27] Khan, K. A., Nardelli, P., Jaeger, A., O’Shea, C., Cantillon-Murphy, P., & Kennedy, M. P. (2016). Navigational bronchoscopy for early lung cancer: a road to therapy. Advances in therapy, 33, 580-596. [28] Mohan, S. S., del Mar Hershenson, M., Boyd, S. P., & Lee, T. H. (1999). Simple accurate expressions for planar spiral inductances. IEEE Journal of solid-state circuits, 34(10), 1419-1424. [29] Lin, J., Saunders, R., Schulmeister, K., Söderberg, P., Swerdlow, A., Taki, M., Veyret, B., Ziegelberger, G., Repacholi, M. H., & Matthes, R. (2010). ICNIRP Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health physics, 99(6), 818-836. [30] Protection, I. C. o. N.-I. R. (2010). Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health physics, 99(6), 818-836. [31] Sonntag, C., Sprée, M., Lomonova, E., Duarte, J., & Vandenput, A. (2007). Accurate magnetic field calculations for contactless energy transfer coils. Proceedings of the 16th International Conference on the Computation of Electromagnetic Fields, 25-28. [32] MacDonald, D. (1957). Magneto-resistance in metals. Philosophical Magazine, 2(13), 97-104. [33] Ramsden, E. (2011). Hall-effect sensors: theory and application. Elsevier. [34] Ripka, P. (2002). Magnetic sensors and magnetometers. Measurement Science and Technology, 13(4), 645-645. [35] Kuang, K. (2012). Magnetic sensors: principles and applications. BoD–Books on Demand. [36] Tumanski, S. (2007). Induction coil sensors—A review. Measurement Science and Technology, 18(3), R31. [37] Hummel, J. B., Bax, M. R., Figl, M. L., Kang, Y., Maurer Jr, C., Birkfellner, W. W., Bergmann, H., & Shahidi, R. (2005). Design and application of an assessment protocol for electromagnetic tracking systems. Medical physics, 32(7), 2371-2379. [38] 方開泰. (1978). 均匀設計-數理方法在試驗設計中的應用. 概率統計通訊, 1, 56-97. [39] Wang, Y. & Fang, K. T. (1981). A note on uniform distribution and experimental design. Kexue Tongbao, 26, 485-489. [40] 林李旺. (2009). 快速精通實驗計邁向 Six Sigma的關鍵方法方法. 台北:全華科技圖書股份有限公司. [41] 蔡孟儒. (2012). 應用均匀實驗設計與克利金反應曲面於人工牙根最佳化設計(碩士論文). 國立高雄第一科技大學. [42] 方開泰. (1994). 均匀設計與匀設計表. 北京:科學出版社. [43] Fang, K. T., & Lin, D. K. (2003). Uniform experimental designs and their applications in industry. Handbook of statistics, 22, 131-170. [44] 林晉禾. (2011). 應用均匀實驗設計奥克利金插值法於自行車車架之最佳化分析(碩士論文). 國立高雄第一科技大學. [45] Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119-139. [46] Sacks J. et al. Design and analysis of computer experiments. Stari Science, 4(4), 409-439. [47] Sakata, S., Ashida, F., & Zako, M. (2003). Eigenfrequency optimization of stiffened plate using Kriging estimation. Computational mechanics, 31, 409-418. [48] Liu, C. H., & Chan, K.Y. (2008). Reliability-base design of a pressure tank under random and stochastic environments. ASMS International Design Engineering Technical Conference. [49] 鄭永長, 蔡孟儒, 江卓培, & 李政鋼. (2012). 以均匀實驗設計與有限元素法求解人工牙根之最佳設計. 中國機械工程學會第二十九屆全國學術研討會, 台灣. [50] Andria, G., Attivissimo, F., Di Nisio, A., Lanzolla, A. M. L., & Ragolia, M. A. (2023). Analysis and optimization of surgical electromagnetic tracking systems by using magnetic field gradients. Acta IMEKO, 12(2), 1-8. [51] Li, M., Hansen, C., & Rose, G. (2017). A simulator for advanced analysis of a 5-DOF EM tracking systems in use for image-guided surgery. International journal of computer assisted radiology and surgery, 12, 2217-2229. [52] Lophaven, S. N., Nielsen, H. B., Sondergaard, J., & Dace, A. (2002). A matlab kriging toolbox. Technical University of Denmark, Kongens Lyngby, Technical Report No. IMM-TR-2002-12. [53] 簡祐生. (2022). 基於FPGA的即時電磁定位演算法開發(碩士論文). 國立中山大學. [54] Sirokai, B., Kiss, M., Kovács, L., Benyó, B., Benyó, Z., & Haidegger, T. (2012). Best practices in electromagnetic tracking system assessment. Proc Jt Work New Technol Comput Assist Surg (SCATh), Madrid ID, 12, 1-4. [55] Bosnjak, A., Carmona, R., Ríos, L., Montilla, G., & Jara, I. (2009). Calibration of the Magnetic Tracker for Acquisition of 3D Images to Guide Neurosurgeries. World Congress on Medical Physics and Biomedical Engineering, 25(6), 20-23. [56] Morley, C. T., Arreola, D. M., Qian, L., Lynn, A. L., Veigulis, Z. P., & Osborne, T. F. (2024). Mixed reality surgical navigation system; positional accuracy based on food and drug administration standard. Surgical Innovation, 31(1), 48-57. [57] Kindratenko, V. (1999). Calibration of electromagnetic tracking devices. Virtual Reality, 4, 139-150. [58] 王紹宇. (2015). 晶圓級晶片尺寸封裝之介電層互連可靠度強化(碩士論文). 國立中山大學. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2034-10-13 校外 Off-campus:開放下載的時間 available 2034-10-13 您的 IP(校外) 位址是 216.73.216.128 現在時間是 2025-06-12 論文校外開放下載的時間是 2034-10-13 Your IP address is 216.73.216.128 The current date is 2025-06-12 This thesis will be available to you on 2034-10-13. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2029-10-13 |
QR Code |