Responsive image
博碩士論文 etd-0915121-155802 詳細資訊
Title page for etd-0915121-155802
論文名稱
Title
以高分子材料製作隔熱膜之模擬與分析
Simulation and analysis of insulation film based on polymer materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-08-12
繳交日期
Date of Submission
2021-10-15
關鍵字
Keywords
隔熱膜、金屬、高分子、低折射率材料、高折射率材料
insulation film, simulate and design, polymer, lowest refractive index materials, highest refractive index materials
統計
Statistics
本論文已被瀏覽 153 次,被下載 0
The thesis/dissertation has been browsed 153 times, has been downloaded 0 times.
中文摘要
本研究使用macleod軟體模擬、設計隔熱膜,材料選用各式金屬和高分子來製作。金屬膜選用金、銀、銅、鋁,陶瓷則選用TiO2、SnO2、ZnO、Si3N4,模擬後得到最佳設計為TiO2/Si/Ag/TiO2/Si/Ag/TiO2 ,其可見光平均透射率86.17%,紅外光平均透射率4.09%。然而金屬、陶瓷膜需要真空蒸鍍、磁控濺鍍大面積製作,耗時費工。相對而言高分子膜可以大片塗佈,有利於縮短工時。
高分子膜使用實驗上最高及最低折射率的材料polyvinylsulfide (聚硫醚,PVS)和polydimethylsiloxane(聚二甲基矽氧烷,PDMS),基板選用polyethylene terephthalate(聚對苯二甲酸乙二酯,PET),兩材料藉由macleod軟體模擬得知在特定光學厚度下交錯排列可降低特定波段的穿透率,在80層排列下其可見光穿透率可到92.284%,紅外光反射率20.64%,相對於3M光學膜200層製程更加簡單方便。
接著再設計以高分子、金屬與陶瓷交錯排列設計,既可具備金屬膜層數較少的特性,又兼具高分子膜層塗佈簡單的優點,其最佳設計結果為PVS/Si/Ag/PVS /Si/Ag/PVS,其可見光透射率85.13%,紅外光透射率4.457%。
最後本研究在玻璃兩面用不同鍍膜的方式進行模擬,其設計上有金屬膜的部分可以反射大部分的紅外光,而高分子膜的部分讓可見光穿透其兩層鍍膜可見光,其穿透率85.19%,紅外光700~2500 nm穿透率3.34%。
Abstract
This research uses macleod software to simulate and design the heat insulation film, The materials are made of various metals and polymers. After macleod simulation, TiO2/Ag/TiO2 has the best performance under a specific optical thickness. Using this as the basis to add the number of material layers to get the best design TiO2/Si/Ag/TiO2/Si/Ag/TiO2, the average transmittance of visible light is 86.17%, and the average transmittance of infrared light is 4.09%.
The polymer film is made of polyvinylsulfide and polydimethylsiloxane with the highest and lowest refractive index materials. With an arrangement of ninety layers, the staggered arrangement of the two materials at a specific optical thickness can reduce the transmittance of IR waves, and transmittance of the visible light is 92.284%.
The third design is the arrangement of polymer, metal and oxide. It has the characteristics of fewer metal film layers and the advantage of simple polymer film coating. Its design combines the advantages of polymer and metal film as heat insulation Membrane has its development characteristics.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 v
表目錄 vii
1. 第一章 緒論 1
1.1前言 1
1.2研究動機 4
2. 第二章 基礎理論與材料特性 5
2.1薄膜光學 5
2.1.1 導納軌跡法 6
2.2 Essential macleod 11
2.3 各式材料介紹 11
2.3.1 銀 13
2.3.2 鋁 13
2.3.3 金 13
2.3.4 銅 13
2.3.5 高分子 13
2.3.6 二氧化鈦 14
2.3.7 二氧化錫 14
2.3.8 氮 14
2.3.9 氧化鋅 14
2.4 模擬構想 15
第三章 各式隔熱紙之模擬設計 17
3.1 以金屬為主之隔熱膜 17
3.1.1 利用macleod設計包含銀膜、陶瓷之3層隔熱膜 22
3.1.2 利用macleod設計包含鋁膜、陶瓷之3層隔熱膜 29
3.1.3 多層薄膜架構 37
3.2 以高分子材料為主之隔熱膜 41
3.2.1 週期性排列 42
3.2.2 以高分子取代氧化膜之多層設計 46
3.2.3 兩層鍍膜 49
3.2.4 太陽光進光量 50
3.2.5 鍍膜誤差分析 52
3.2.6 薄膜顏色 53
3.3 各式隔熱膜比較 54
第四章 結果與討論 57
第五章 未來工作 58
參考文獻 59
參考文獻 References
[1] H. Akbari, P. Berdahl, R. Levinson, S. Miller, and A. Desjarlais, (2006). Cool Color Roofing Materials, Public Interest Energy Research (PIER No. 500-01-021).University of California
[2] M.Fabian1, E.Lewis1, T.Newe1 and S.Lochmann.(2010).Optical fibre cavity for ring-down experiments with low coupling losses, Measurement Science and Technology, 21, 1-5.
[3] 李正中 (1999)。 薄膜光學與鍍膜技術(第一版)。 臺北市:藝軒圖書出版社。
[4] D. V.Sidelev, Y. N.Yurjev, V. P.Krivobokov, E. V.Erofeev, O. V.Penkova, V. A.Novikov, (2016). The oxygen-deficient TiO2 films deposited by a dual magnetron sputtering. Vacuum, 134, 29-32.
[5] Y. Tachibana, H. Ohsaki, A. Hayashi, A. Mitsui, Y. Hayashi, (2000). TiO2−X sputter for high rate deposition of TiO2, Vacuum, 59, 836-843.
[6] M. H. Hwang, H. Kong, J. W. Jeong, H. Y. Lee, (2020). Thermal stability enhancement of SnO2/Ag/SnO2 transparent electrodes using Ni-doped Ag,
Superlattices and Microstructures, 141, 106503.
[7] Y. C. Ding, A. P. Xiang, M. Xu, W. J. Zhu, (2008). Electronic structures and optical properties of γ-Si3N4 doped with La, Physica B: Condensed Matter, 403,
2200-2206.
[8] S. Suresh, B. Subash, S. Karthikeyan,(2017). Electrical, optical and photocatalytic properties of Ti loaded ZnO/ZnO and Ti loaded ZnO nanospheres, Journal of the Iranian Chemical Society, 14, 1591-1600.
[9]J. A. Dobrowolski, and L. Li, (1995). Design of optical coatings for three or more separated spectral regions. Applied Optics, 34, 2934-2940.
[10]L. Chadrasekhar, R. P. Kyoung, and K. S. Lee, (2016). SiO2/TiO2/n-Si/Ag(Cr)/TiO2 thin films with superhydrophilicity and low-emissivity, Japanese Journal of Applied Physics , 55, 1-5.
[11] X. Zhang, J. Qiu, X. Li, J. Zhao and L. Liu, (2020). Complex refractive indices measurements of polymers in visible and near-infrared bands. Applied Optics, 59,2337-2344.
[12] S. Gazzo, G. Manfredi, R. Potzsch, Q. Wei, M. Alloisio, B. Voit and D. Comoretto, (2015). High Refractive Index Hyperbranched Polyvinylsulfides for Planar One-Dimensional All-Polymer Photonic Crystals. Polymer Phsysics, 54,73-80.
[13] W.S. Sun, C. L. Tien, C.H. Tsuei, and J.W. Pan, (2014). Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination. ReserchGate, 53,186-194.
[14] A. M. Al-Shukri, (2007). Thin film coated energy-efficient glass windows for warm climates, Desalination, 209, 290–297.
[15] S. D. Rezaei, S. Shannigrahi, and S. Ramakrishna, (2017). A review of conventional,advanced,and smart glazing technologies and materials for improving indoor environment. Solar Energy Materials & Solar Cells, 159, 26-51.
[16]黄敏,崔桂华,刘瑜,刘浩学, (2015). 不同观察者锥细胞响应的同色异谱性能差异测试分析. 光谱学与光谱分析, 10,2802-2809.
[17] J. J. Finley, (1999). Heat Treatment and Bending of Low-E Glass. Thin Solid Films, 351, 264–273.
[18] A. E. Shimabukuro, A. Ishii, H. Takamura, and F. S. Ohuchi, (2019). Fabrication of absorbing Nb-Ti suboxide anti-reflective thin film stacks. Results in Physics, 15, 1-4.
[19] K. W.A. Chee, Z. Tang , and H. Lu , F. Huang, (2018). Anti-reflective structures for photovoltaics: Numerical and experimental design. Energy Reports, 4, 266-273.
[20] B. G. Priyadarshini, and A. K. Sharma, (2016). Design of multi-layer anti-reflection coating for terrestrial solar panel glass. Bulletin of Materials Science, 39, 683-689.
[21]蔡家源 (2017)。 低輻射玻璃之光學薄膜設計, 碩士論文,崑山科技大學。
[22] B.K Kim , B. H. Lee , K. S. Cho , and S. Y. Lee, (2019). Simulation and optimization of layer thickness of amorphous oxide SIZO/Ag/SIZO multilayer to enhance transmittance of transparent electrodes without sacrificing sheet resistance. Journal of Alloys and Compounds, 798, 622-627.
[23] Y. T. Kim, J. Y. Cho, and J. Heo, (2018). Formation of antireflection structures for silicon in near-infrared region using AlOx/TiOx bilayer and SiNx single-layer. Journal of Non-Crystalline Solids, 489, 22-26.
[24] K. Kim, G. Y. Song, Y. T. Kim, J. H. Moon, and J. Heo, (2017). Simulation and deposition of near-IR anti-reflection layers for silicon substrates. Surface and Coatings Technology, 332, 262-266.
[25] N. Selvakumar, K. Prajith, A. Biswas, and H. C. Barshilia, (2015). Optical simulation and fabrication of HfMoN/HfON/Al2O3 spectrally selectivecoating. Solar Energy Materials & Solar Cells, 140, 328-334.
[26] J. W. Jang, J. S. Kim, H. Jee, S. H. Hong, and H. W. Seo, (2020). Composite titanium oxide nanocolumnar thin films for low-emissivity coating. Current Applied Physics, 20, 817-821.
[27] N. Abundiz-Cisneros , R. Sangin´es , R. Rodr´ıguez-L´opez ,M. Peralta-Arriola , J. Cruz , and R. Machorro, (2019). Novel Low-E Filter for Architectural Glass Pane. Energy & Buildings, 206, 1-8.
[28] L. Long, and H.Ye, (2014). How to be smart and energy efficient: ageneraldiscussionon thermochromic windows, Scientific reports, 19, 1-9.
[29] H. S. Seo, D. G. Lee, H. Kim, and S. Huh, B. S. Ahn, (2008). Effects of mask absorber structures on the extreme ultraviolet lithography. Journal of Vacuum Science and Technology, 26, 2208-2214.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-10-15
校外 Off-campus:開放下載的時間 available 2026-10-15

您的 IP(校外) 位址是 216.73.216.226
現在時間是 2025-06-04
論文校外開放下載的時間是 2026-10-15

Your IP address is 216.73.216.226
The current date is 2025-06-04
This thesis will be available to you on 2026-10-15.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-10-15

QR Code