Responsive image
博碩士論文 etd-0916120-142242 詳細資訊
Title page for etd-0916120-142242
論文名稱
Title
以波潮耦合數值模式探討台灣周邊海域暴潮特性
A Numerical Study on the Characteristics of Storm Surges around Taiwan using Coupled Wave and Current models
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-10-08
繳交日期
Date of Submission
2020-10-16
關鍵字
Keywords
Chezy、風暴潮、SCHISM、波潮耦合、暴潮模式
Wave-tide coupling, Surge model, Storm surge, Chezy, SCHISM
統計
Statistics
本論文已被瀏覽 330 次,被下載 34
The thesis/dissertation has been browsed 330 times, has been downloaded 34 times.
中文摘要
暴潮為劇烈的氣象因子影響海洋現象,透過氣壓或風應力等的氣象條件作用,會導致海表面的水位異常抬升,此現象稱為暴潮現象。當颱風暴潮發生於沿岸地區時,海水面可能出現高過平日的最高潮位,使陸地的河水無法排出,甚至發生海水越過堤防,導致沿岸地區發生潰堤及海水倒灌等淹水災害。
本研究透過分析各地潮汐水位測站水位資料,並使用SCHISM海流模式與第三代波浪數值模式WWM模式模擬暴潮,透過暴潮模式與波潮耦合模式模擬颱風期間所發生的暴潮現象,過程並進行模式網格網格細化、底床摩擦應力敏感度測試、風拖曳係數比對與風場資料比對以校正天文潮,求得較精準天文潮水位以利計算暴潮偏差。研究結果顯示台灣東岸測站於波潮耦合模式與暴潮模式中因東部海域水深深度較深導致模擬結果相近。在本研究案例中後壁湖測站皆觀察到較大的波揚現象發生,在尼伯特颱風後壁湖測站波潮耦合模式的最大暴潮偏差為55公分,暴潮模式為29公分,產生的波揚約為26公分,波揚佔總暴潮偏差的40%。而在尼莎颱風案例中,雖僅受同時間在南部輕颱的海棠颱風影響,但其波潮耦合模式水位為38公分,暴潮模式水位為20公分,波揚高度達18公分,波揚可以提供約總風暴潮水位的29%。故本研究欲透過分析觀測資料與數值模式模擬,探討在不同路徑及強度的颱風下,颱風對於台灣周邊海域的暴潮現象,與颱風期間波浪對於暴潮水位的貢獻,以作為未來台灣地區颱風暴潮預警。
Abstract
Storm surge is a dramatic meteorological factor to affects ocean. Through meteorological parameter, such as air pressure or wind stress, it will make the water level rise abnormally. This kind of phenomenon is called storm surge. When a typhoon surge occurs in coastal areas, the mean sea level is probably higher than the highest tide level. It may not make the river water emit from the land to the ocean, even cross the dike, and result in the flooding disasters such as dike breaking and seawater intrusion in coastal areas.
This research analyzes the data of gauging stations in different places around Taiwan, and applies current model(SCHISM) and wave model(WWM) that base on unstructured grid to simulate storm surge when typhoon swwep through waters around Taiwan. During the calibration of model, We refine the grid of model and test the sensitivity of bottom friction coefficient, and then compares with the wind field data and chooses the equation of wind drag. The results of the study show that the result of the couple model is similar to the storm surge model on the east coast of Taiwan due to the deeper water depth in the eastern sea. HouBiHu station has lager wave setup during the typhoon case of Nepartak and Nesat. The maximum storm surge anomaly of couple model is 55 cm, and surge mode is 29 cm, and wave setup is about 26 cm which accounts for 40% of the total storm surge anomaly.
In the case of Nesat, HouBiHu station was only affected by HaiTang typhoon that sweeps through waters south of Taiwan at the same time, the storm surge anomaly of couple model is 38 cm, tnd surge mode is 20 cm, and wave setup is about 18 cm which accounts for 29% of the total storm surge anomaly. Therefore, this study intends to analyze the observational data and numerical model simulations to explore the phenomenon of the storm surge around Taiwan under different paths and intensities, and the contribution of wave to storm surge during the typhoon as a storm surge warning in Taiwan.
目次 Table of Contents
目錄
論文審定書 i
摘要 ii
Abstract iii
圖目錄 vii
表目錄 x
第1章 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究問題與目的 2
第2章 第二章 文獻回顧 3
2.1 颱風暴潮機制 3
2.1.1 世界颱風暴潮案例 4
2.1.2 台灣颱風暴潮案例 8
2.2 颱風暴潮模式發展 12
2.3 輻射應力對水位之影響 13
2.4 颱風波浪推算 17
第3章 第三章 研究方法 19
3.1 海流模式 19
3.2 波浪模式 24
3.3 模式耦合 26
3.4 網格建置 28
3.5 模式初始場設定 30
3.6 風拖曳係數選用 31
3.7 風場資料比對 32
第4章 第四章 結果與討論 34
4.1 潮汐水位驗證 34
4.1.1 底床摩擦係數對振福及相位之敏感度測試 34
4.1.2 Verboom(1992)對底床摩擦係數的測試 40
4.1.3 天文潮汐水位驗證 51
4.2 案例探討 54
4.2.1 2016年尼伯特颱風(NEPARTAK) 55
4.2.2 2017年尼莎颱風(NESAT) 60
第5章 第五章 結論 65
5.1 結論 65
5.2 建議 66
參考文獻 67
附錄A 台灣各地潮位站的天文潮水位驗證 75
附錄B 台灣各地潮位站在不同底床摩擦係數設定的時序水位圖 83
參考文獻 References
Battjes, J. A. (1974). Computation of Set-Up, Longshore Currents, Run-Up and Overtopping Due To Wind Generated Waves.
Bennis, A. C., Ardhuin, F., &Dumas, F. (2011). On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests. Ocean Modelling, 40(3–4), 260–272. https://doi.org/10.1016/j.ocemod.2011.09.003
Bertin, X., Bruneau, N., Breilh, J. F., Fortunato, A. B., &Karpytchev, M. (2012). Importance of wave age and resonance in storm surges: The case Xynthia, Bay of Biscay. Ocean Modelling, 42, 16–30. https://doi.org/10.1016/j.ocemod.2011.11.001
Bowen, A. J. (1969). Rip currents: 1. Theoretical investigations. Journal of Geophysical Research, 74, 5467–5478. https://doi.org/10.1029/jc074i023p05467
Bretherton, F. P., &Garrett, C. J. R. (1968). Wavetrains in inhomogeneous moving media. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 302(1471), 529–554. https://doi.org/10.1098/rspa.1968.0034
Bretschneider, C. L. (1952). The generation and decay of wind waves in deep water, 33, 381–389.
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., et al. (2010). A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model development and validation. Monthly Weather Review, 138(2), 345–377. https://doi.org/10.1175/2009MWR2906.1
Chen, C., Beardsley, R. C., & Cowles, G. (2006). AN UNSTRUCTURED GRID , FINITE VOLUME COASTAL OCEAN. Oceanography, 19(1), 78–89.
Chen, W. B., Chen, H., Hsiao, S. C., Chang, C. H., &Lin, L. Y. (2019). Wind forcing effect on hindcasting of typhoon-driven extreme waves. Ocean Engineering, 188(August), 106260. https://doi.org/10.1016/j.oceaneng.2019.106260
Chen, Y., Chen, L., Zhang, H., &Gong, W. (2019). Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato. Estuarine, Coastal and Shelf Science, 228(January), 106364. https://doi.org/10.1016/j.ecss.2019.106364
Feng, X., Li, M., Yin, B., Yang, D., &Yang, H. (2018). Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations. International Journal of Applied Earth Observation and Geoinformation, 68, 272–278. https://doi.org/10.1016/j.jag.2018.01.006
Gelci, R., Cazal, J., &Vassal, J. (1957). Prévision de la houle. La méthode des densités spectroangulaires., 9, 416–435.
Hansen, W. (1956). Theorie zur Errechnung des Wasserstandes und der StrÖmungen in Randmeeren nebst Anwendungen. Tellus, 8(3), 287–300. https://doi.org/10.3402/tellusa.v8i3.9023
Harris, D. L. (1963). Characteristics of the hurricane storm surge. Department of Commerce, Weather Bureau. https://doi.org/10.1016/0011-7471(64)91038-1
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Eake, K., et al. (1973). Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP).
Hwang, P. A. (2018). High-wind drag coefficient and whitecap coverage derived from microwave radiometer observations in tropical cyclones. Journal of Physical Oceanography, 48(10), 2221–2232. https://doi.org/10.1175/JPO-D-18-0107.1
Kerr, P. C., Martyr, R. C., Donahue, A. S., Hope, M. E., Westerink, J. J., Luettich, R. A., et al. (2013). U.S. IOOS coastal and ocean modeling testbed: Evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(9), 4633–4661. https://doi.org/10.1002/jgrc.20305
Komar, P. D. (1998). Beach Processes and Sedimentation (Vol. 79).
Large, W. G., &Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11, 324–336.
Li, L., Yang, J., Ting Chua, C., Wang, Y., Zhao, K., Li-Fan Liu, P., et al. (2018). Field survey of Typhoon Hato (2017) and a comparison with storm surge modeling in Macau. Natural Hazards and Earth System Sciences, 18(12), 3167–3178. https://doi.org/10.5194/nhess-18-3167-2018
Longuet-Higgins, &Stewart. (1964). Radiation stresses in water waves; a physical discussion, with applications. IEEE Transactions on Industrial Electronics, 11(4), 529–562. https://doi.org/10.1109/TIE.2012.2208438
Longuet-Higgins, M. S., &Stewart, R. W. (1962). Radiation stress and mass transport in gravity waves, with application to ‘surf beats.’ Journal of Fluid Mechanics. https://doi.org/10.1017/S0022112062000877
Longuet-Higgins, M. S., &Stewart, R. W. (1963). A note on wave set-up. Deep Sea Research and Oceanographic Abstracts, 4–10. https://doi.org/10.1016/0011-7471(64)90258-x
Martyr, R. C., Dietrich, J. C., Westerink, J. J., Kerr, P. C., Dawson, C., Smith, J. M., et al. (2013). Simulating Hurricane Storm Surge in the Lower Mississippi River under Varying Flow Conditions. ASCE Journal of Hydraulic Engineering, 139, 492–501. https://doi.org/10.1061/(ASCE)HY.1943-7900
Mellor, G. L. (2008). The depth-dependent current and wave interaction equations: A revision. Journal of Physical Oceanography, 38(11), 2587–2596. https://doi.org/10.1175/2008JPO3971.1
Pierson Jr, W. J., Neumann, G., & James, R. W. (1955). Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics. NAVAL OCEANOGRAPHIC OFFICE NSTL STATION MS.
Pore, N. A. (1964). The Relation of Wind and Pressure to Extratropical Storm Surges at Atlantic City. Journal of Applied Meteorology. https://doi.org/10.1175/1520-0450(1964)003<0155:trowap>2.0.co;2
Roland, A. (2008). Development of WWM (Wind Wave Model) II: Spectral wave modelling on unstructured meshes.
Roland, Aron, Cucco, A., Ferrarin, C., Hsu, T., Liau, J., Ou, S., et al. (2009). On the development and verification of a 2-D coupled wave-current model on unstructured meshes. Journal of Marine Systems, 78(Supplement), S244–S254. https://doi.org/10.1016/j.jmarsys.2009.01.026
Roland, Aron, Zhang, Y. J., Wang, H.V., Meng, Y., Teng, Y. C., Maderich, V., et al. (2012). A fully coupled 3D wave-current interaction model on unstructured grids. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2012JC007952
SCHISM development teams. (2018). SCHISM v5.3.1 Manual.
Shchepetkin, A. F., &Mcwilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002
Shea, D. J., &Gray, W. M. (1973). The Hurricane’s Inner Core Region. I. Symmetric and Asymmetric Structure. J. Atmos. Sci. Retrieved from http://hurricane.atmos.colostate.edu/Includes/Documents/Publications/sheagray1973.pdf
Sheng, Y. P., Zhang, Y., &Paramygin, V. A. (2010). Simulation of storm surge, wave, and coastal inundation in the Northeastern Gulf of Mexico region during Hurricane Ivan in 2004. Ocean Modelling, 35(4), 314–331. https://doi.org/10.1016/j.ocemod.2010.09.004
Sheng, Y. P., Alymov, V., &Paramygin, V. A. (2010). Simulation of storm surge, wave, currents, and inundation in the outer banks and Chesapeake bay during Hurricane Isabel in 2003: The importance of waves. Journal of Geophysical Research: Oceans, 115(4). https://doi.org/10.1029/2009JC005402
Shepard, F. P., &Inman, D. L. . (1950). Nearshore water circulation related to bottom topography and wave refraction. Journal of Chemical Information and Modeling, 31, 196–212. https://doi.org/10.1017/CBO9781107415324.004
Shih, H. J., Chen, H., Liang, T. Y., Fu, H. S., Chang, C. H., Chen, W. B., et al. (2018). Generating potential risk maps for typhoon-induced waves along the coast of Taiwan. Ocean Engineering, 163(May), 1–14. https://doi.org/10.1016/j.oceaneng.2018.05.045
Smith, S. D., &Banke, E. G. (1975). Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101(429), 665–673. https://doi.org/10.1002/qj.49710142920
Smith, Stuart D. (1980). Wind stress and heat flux over the ocean in gale force winds. Journal of Physical Oceanography, 10(5), 709–726.
SWAMP Group. (1985). Ocean Wave Modeling.
Thomas, A., Dietrich, J. C., Asher, T. G., Bell, M., Blanton, B. O., Copeland, J. H., et al. (2019). Influence of storm timing and forward speed on tides and storm surge during Hurricane Matthew. Ocean Modelling, 137, 1–19. https://doi.org/10.1016/j.ocemod.2019.03.004
Tolman, H. L. (1992). Effects of Numerics on the Physics in a Third-Generation Wind-Wave Model. J. Phys. Oceanogr, 22(10), 1095–1111.
Verboom, G. K., deRonde, J. G., &vanDijk, R. P. (1992). A fine grid tidal flow and storm surge model of the North Sea. Continental Shelf Research, 12, 213–233. https://doi.org/10.1016/0278-4343(92)90030-N
Wu, J. (1980). Wind-stress coefficients over sea surface near neutral condition. Journal of Physical Oceanography, 10, 727–740.
Xia, H., Xia, Z., &Zhu, L. (2004). Vertical variation in radiation stress and wave-induced current. Coastal Engineering. https://doi.org/10.1016/j.coastaleng.2004.03.003
Xie, L., Pietrafesa, L. J., &Wu, K. (2003). A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996. Journal of Geophysical Research C: Oceans, 108(2), 31–1. https://doi.org/10.1029/2001jc001078
Xie, Lian, &Liu, H. (2009). A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989. Continental Shelf Research, 29(11–12), 1454–1463. https://doi.org/10.1016/j.csr.2009.03.013
Xie, Lian, Liu, H., &Peng, M. (2008). The effect of wave-current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Modelling, 20(3), 252–269. https://doi.org/10.1016/j.ocemod.2007.10.001
Xu, F., Perrie, W., &Solomon, S. (2013). Shallow water dissipation processes for wind waves off the Mackenzie Delta. Atmosphere - Ocean, 51(3), 296–308. https://doi.org/10.1080/07055900.2013.794123
Yang, Z., Wang, T., Castrucci, L., &Miller, I. (2019). Modeling assessment of storm surge in the Salish Sea. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2019.106552
Yu, C. S., Marcus, M., &Monbaliu, J. (1992). Implementation of tidal flow equations on distributed memory parallel computers. Parallel Computing and Transputer Applications, 1331–1338.
Yu, H., Yu, H., Wang, L., Kuang, L., Wang, H., Ding, Y., et al. (2017). Tidal propagation and dissipation in the Taiwan Strait. Continental Shelf Research, 136, 57–73. https://doi.org/10.1016/j.csr.2016.12.006
Yu, X., Pan, W., Zheng, X., Zhou, S., &Tao, X. (2017). Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakot. Continental Shelf Research, 146, 47–57. https://doi.org/10.1016/j.csr.2017.08.009
Zaker, N. H. (2003). Computation and Modeling of the Air-Sea Heat and Momentum Fluxes, (June), 1–9.
Zhang, Y., &Baptista, A. M. (2008). SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Modelling, 21(3–4), 71–96. https://doi.org/10.1016/j.ocemod.2007.11.005
Zhang, Y. J., Ye, F., Stanev, E.V., &Grashorn, S. (2016). Seamless cross-scale modeling with SCHISM. Ocean Modelling, 102, 64–81. https://doi.org/10.1016/j.ocemod.2016.05.002
于嘉順. (2005). 「中央氣象局多尺度暴潮模式預報作業改進及長期暴潮水位模擬分析研究」,交通部中央氣象局委託研究計畫成果報告.
劉肖孔. (1987). 「台灣海域颱風暴潮及氣象潮數值預報模式研究計畫」,第三階段成果報告,中央氣象局研究報告第279號.
台灣颱風資訊中心. (2020). 蒲福風級簡史. Retrieved from http://typhoon.ws/typhoon/report_gov
廖建明. (2001). 近岸風浪推算之研究. 國立成功大學.
李賢文. (1982). 台灣西南沿岸颱風暴潮之研究. Taiwan University ACTA Oceanographica Taiwanica, (13), 154–166.
許泰文. (2003). 近岸水動力學. 台北科技圖書.
許泰文, &廖建明. (1998). 近岸海域暴潮預測模式之建立.
邱銘達, 高家俊, 馮智源, &江俊儒. (2006). 颱風暴潮數值推算準確度提升之研究. 第 28 屆海洋工程研討會論文集 (pp. 253–258).
雷祥宇, 黃家俊, 林書帆, 林吉洋, &莊瑞琳. (2019). 颱風在下一次巨災來臨前.台北市:春山出版,國家災害防救科技中心.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code