論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-10-19
校外 Off-campus:開放下載的時間 available 2027-10-19
論文名稱 Title |
使用相位和頻率偏移技術之先進自我注入鎖定雷達 Advanced Self-Injection-Locked Radar Using Phase- and Frequency-Offset Techniques |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
123 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-10-06 |
繳交日期 Date of Submission |
2022-10-19 |
關鍵字 Keywords |
連續波雷達、數位頻率解調、電磁干擾、頻率轉換、頻率估計演算法、低中頻、自我注入鎖定雷達 Continuous-wave (CW) radar, digital frequency demodulation, electromagnetic interference (EMI), frequency conversion, frequency estimation algorithm (FEA), low intermediate frequency (IF), self-injection-locked (SIL) radar |
||
統計 Statistics |
本論文已被瀏覽 190 次,被下載 0 次 The thesis/dissertation has been browsed 190 times, has been downloaded 0 times. |
中文摘要 |
近年,自我注入鎖定雷達已經被證明對於微弱震動的訊號例如人體的心肺運動具有良好的靈敏度,同時能抑制靜止物體產生的靜態雜波干擾。然而先前的研究結果指出,受限於自我注入鎖定狀態下非線性失真的問題,傳統的自我注入鎖定雷達僅能在物體位移量小於λ/25時,也就是滿足小角度近似時偵測待測物的位移量。本論文首先提出一種正交自我注入鎖定雷達,使用一正交相移器調制注入訊號,並在後端使用兩階段的反正切解調獲得無失真的都普勒訊號。此外由於注入鎖定機制為一相位轉頻率調制的過程,待測物的位移量在注入鎖定狀態下會造成一頻寬不固定的頻率調制訊號,容易對其他無線系統造成電磁干擾。本論文接著提出可以穩定輸出頻率的頻率偏移式自我注入鎖定雷達,此架構透過兩個下混頻器與一個上混頻器將兩組獨立的自我注入鎖定路徑結合,適當地調整相移器以及衰減器可以分別控制注入訊號的相位以及頻率鎖定範圍,如此便可以達到頻率穩定的輸出訊號。此外,其低中頻的頻率解調器改善了諸多傳統延遲線頻率鑑別器的限制,與傳統架構相比有28 dB的訊雜比增益。本論文最後提出一種單次頻率轉換的自我注入鎖定雷達架構並討論在不同應用下效能的提升。當操作頻率降低時 (5.8 GHz到0.433 GHz),電磁波在介質中有較佳的穿透性,故此架構可以利用將高頻段的自我注入鎖定振盪器降頻,使系統具有低的插入損耗同時保有高的頻率鎖定範圍,在透地和穿牆應用中具有良好的感測靈敏度。另一種是當操作頻率提升時 (2.4 GHz到5.8 GHz),更高的中心頻率以及調制頻寬使頻率調制模式下的自我注入鎖定雷達有更好的距離解析度,當兩鄰近的物體距離大於距離解析度時,此架構的迴路相位差與頻譜峰值下的相位應保持一致,若物體間彼此的距離小於距離解析度,上述的相位判別則失效,故此架構可以用來判斷距離解析度發生的位置。而距離解析度的問題則可以透過本篇提出的頻率估計演算法來進一步提升至原先之40%–70%。本論文研究的實驗結果皆與理論預測吻合,驗證了相位和頻率偏移技術之先進自我注入鎖定雷達的性能。 |
Abstract |
The self-injection-locked (SIL) radar has been proved to be sensitive to tiny movement such as respiration and cardiopulmonary activities and good stationary clutter immunity. However, nonlinear distortion originated from the SIL phenomenon results in the difficulty detecting the motion which exceeds λ/25. In the first experiment, the quadrature SIL (QSIL) radar uses an additional phase shifter to repeatedly switch the phase delay of injection signals between quadrature interval, and a two-stage arctangent demodulation after frequency demodulation and coherent sampling are used to obtain a non-distortion Doppler signal. In addition, since the injection-locked mechanism is a phase-to-frequency modulation process, the displacement of the subject will cause a frequency modulation signal with an irregular bandwidth, which is likely to cause electromagnetic interference (EMI) to other wireless devices. The following presents a frequency-offset SIL (FOSIL) radar which combines two independents SIL path through two down-mixers and an up-mixer. By properly adjust the phase shifter and attenuator, the injection phase difference and locking range of the SIL oscillator (SILO) can be determined, respectively. Once combining these two SIL paths, a stabilized output signal can be achieved and resolve the EMI issue. Furthermore, the digital frequency demodulation at low-intermediate frequency (IF) end improves the shortcoming of the conventional delay discriminators. Last, this dissertation proposed single-conversion SIL (SCSIL) radar architectures and discussed the performance in different applications. The down-converted SCSIL radar outputs the low-frequency ISM band signal while having a high-frequency SILO with its better locking range. Therefore, this radar system achieves good sensitivity in through-wall detection or ground-penetrating applications. When the output frequency is increased from 2.4 to 5.8 GHz and operated in frequency-modulated continuous-wave mode by the frequency-converter unit. The frequency-phase relationship is used to determine the position of the range resolution issue happened, which can further alleviate the computation cost of the frequency estimation algorithm. The experimental results agree with the theoretical predictions, verifying the performance of the improved SIL radar using phase- and frequency-offset techniques. |
目次 Table of Contents |
論文審定書 i 摘要 iii Abstract iv List of Figures vii List of Tables xi Chapter 1Introduction1 1.1Research Motivation 1 1.2CW Radar for Noncontact Detection2 1.3SIL Radar System6 1.4Dissertation Overview8 Chapter 2Quadrature SIL Radar9 2.1Nonlinear Distortion of Conventional SIL Radar9 2.2Quadrature SIL Radar Front-End12 2.3Two-Stage Arctangent Demodulation14 2.3.1Measurement-Based DC Offset Calibration15 2.3.2Differential-Based DC Offset Calibration17 2.4Experimental Setup and Verification20 2.5Monitoring Vital Sign Using QSIL Radar28 2.6Comparison of Radar-Based Displacement Systems30 Chapter 3Frequency-Offset SIL Radar33 3.1Frequency-Offset SIL Radar Front-End33 3.2Frequency Demodulation38 3.2.1Two Frequency Demodulator39 3.2.2Low-IF Architecture with Digital Frequency Demodulation40 3.3Experimental Setup and Verification45 3.3.1Single-Radar Experiment47 3.3.2Two-Radar Experiment51 3.4Comparison of SIL Radar for Vital Sign Detection55 Chapter 4Single-Conversion SIL Radar59 4.1System Architecture59 4.2Down-Converted SCSIL Radar61 4.2.1Problem Formulation61 4.2.2Detection Principle62 4.2.3Experimental Setup and Verification65 4.3Up-Converted SCSIL Radar67 4.3.1Detection Principle68 4.3.2Frequency Estimation Algorithm73 4.3.3Experimental Setup and Verification77 4.3.4Range and Doppler Signal Monitoring Using SCSIL Radar83 4.4Comparison of Radar-Based Range and Vital Sign Detection System89 Chapter 5Conclusions92 Bibliography95 Vita109 |
參考文獻 References |
[1] C. Li, V. M. Lubecke, O. Boric-Lubecke and J. Lin, “Sensing of life activities at the human-microwave frontier,” IEEE J. Microw., vol. 1, no. 1, pp. 66–78, Jan. 2021. [2] W. Hu, T. Tan, L. Wang and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Trans. Syst. Man, Cy. C., vol. 34, no. 3, pp. 334–352, Aug. 2004. [3] S. Ji, W. Xu, M. Yang and K. Yu, “3D convolutional neural networks for human action recognition,” IEEE Trans. Pattern Anal., vol. 35, no. 1, pp. 221–231, Jan. 2013. [4] O. P. Popoola and K. Wang, “Video-based abnormal human behavior recognition—a review,” IEEE Trans. Syst. Man, Cy. C., vol. 42, no. 6, pp. 865–878, Nov. 2012. [5] K. Muhammad, J. Ahmad, I. Mehmood, S. Rho and S. W. Baik, “Convolutional neural networks based fire detection in surveillance videos,” IEEE Access, vol. 6, pp. 18174–18183, Mar. 2018. [6] M. I. Skolnik, “The nature of radar,” in Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001, pp. 1–14. [7] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013. [8] K.-M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 47, no. 1, pp. 105–114, Jan. 2000. [9] L. Zhao et al., “UWB Radar Features for Distinguishing Humans From Animals in an Actual Post-Disaster Trapped Scenario,” IEEE Access, vol. 9, pp. 154347–154354, Nov. 2021. [10] J. C. Lin, “Noninvasive microwave measurement of respiration,” in Proc. IEEE, vol. 63, no. 10, pp. 1530, Oct. 1975. [11] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. 33, no. 7, pp. 697–701, Jul. 1986. [12] J. C. Lin, “Microwave sensing of physiological movement and volume change: a review,” Bioelectromagnetics, vol. 13, pp. 557–565, Apr. 1992. [13] Y. Xiao, C. Li, and J. Lin, “A portable noncontact heartbeat and respiration monitoring system using 5-GHz radar,” IEEE Sensors J., vol. 7, no. 7, pp. 1042–1043, Jul. 2007. [14] C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. Asia-Pacific Microw. Conf., Dec. 2010, pp. 283–290. [15] N. Hafner, J. C. Drazen, and V. M. Lubecke, “Fish Heart Rate Monitoring by Body-Contact Doppler Radar,” IEEE Sensors J., vol. 13, no. 1, pp. 408–414, Jan. 2013. [16] F.-K. Wang et al., “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4689–4699, Dec. 2013. [17] E. Yavari and O. Boric-Lubecke, “Channel imbalance effects and compensation for Doppler radar physiological measurements,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 11, pp. 3834–3842, Nov. 2015. [18] T.-Y. Huang, L. F. Hayward, and J. Lin, “Noninvasive measurement and analysis of laboratory rat’s cardiorespiratory movement,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 574–581, Feb. 2017. [19] M. Li and J. Lin, “Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8-GHz CW Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 568–576, Jan. 2018. [20] E. Cardillo, C. Li and A. Caddemi, “Vital sign detection and radar self-motion cancellation through clutter identification,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 3, pp. 1932–1942, Mar. 2021. [21] M. Zakrzewski, A. Vehkaoja, A. S. Joutsen, K. T. Palovuori, and J. J. Vanhala, “Noncontact respiration monitoring during sleep with microwave Doppler radar,” IEEE Sensors J., vol. 15, no. 10, pp. 5683–5693, Oct. 2015. [22] H. Hong, L. Zhang, C. Gu, Y. Li, G. Zhou and X. Zhu, “Noncontact sleep stage estimation using a cw doppler radar,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 2, pp. 260–270, June 2018. [23] H. Hong et al., “Microwave sensing and sleep: noncontact sleep-monitoring technology with microwave biomedical radar,” IEEE Microw. Mag., vol. 20, no. 8, pp. 18–29, Aug. 2019. [24] M. Baboli, A. Singh, B. Soll, O. Boric-Lubecke, and V. M. Lubecke, “Wireless sleep apnea detection using continuous wave quadrature Doppler radar,” IEEE Sensors J., vol. 20, no. 1, pp. 538–545, Jan. 2020. [25] X. Shang, J. Liu and J. Li, “Multiple object localization and vital sign monitoring using ir-uwb mimo radar,” IEEE Trans. Aero. Elec. Sys., vol. 56, no. 6, pp. 4437–4450, Dec. 2020. [26] Z. Peng, L. Ran and C. Li, “A K-band portable FMCW radar with beamforming array for short-range localization and vital-doppler targets discrimination,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3443–3452, Sep. 2017. [27] M. Mercuri et al., “2-D localization, angular separation and vital signs monitoring using a SISO FMCW radar for smart long-term health monitoring environments,” IEEE Internet Things J., vol. 8, no. 14, pp. 11065–11077, Jul. 2021. [28] Z. Fang et al., “Wide field-of-view locating and multimodal vital sign monitoring based on X-band CMOS-integrated phased-array radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 9, pp. 4054–4065, Sep. 2020. [29] F. Wang, X. Zeng, C. Wu, B. Wang and K. J. R. Liu, “mmHRV: Contactless heart rate variability monitoring using millimeter-wave radio,” IEEE Int. Things J., vol. 8, no. 22, pp. 16623–16636, Nov. 2021. [30] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 696–704, Jan. 2013. [31] W.-C. Su, P.-H. Juan, D.-M. Chian, T.-S. Horng, C.-K. Wen and F.-K. Wang, “2-D self-injection-locked doppler radar for locating multiple people and monitoring their vital signs,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 1016–1026, Jan. 2021. [32] S. Iwata, T. Koda and T. Sakamoto, “Multiradar data fusion for respiratory measurement of multiple people,” IEEE Sensors J., vol. 21, no. 22, pp. 25870–25879, Nov. 2021. [33] Y.-S. Su, C.-C. Chang, J.-J. Guo and S.-F. Chang, “2-D wireless human subjects positioning system based on respiration detections,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3. [34] M. Nosrati, S. Shahsavari, S. Lee, H. Wang and N. Tavassolian, “A concurrent dual-beam phased-array doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring,” IEEE Trans. Anten. Propag., vol. 67, no. 4, pp. 2390–2404, Apr. 2019. [35] C.-Y. Hsu et al., “Detection of vital signs for multiple subjects by using self-injection-locked radar and mutually injection-locked beam scanning array,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 991–994. [36] J. Xiong, H. Hong, H. Zhang, N. Wang, H. Chu and X. Zhu, “Multitarget respiration detection with adaptive digital beamforming technique based on SIMO radar,” IEEE Trans. Microw Theory Techn., vol. 68, no. 11, pp. 4814–4824, Nov. 2020. [37] Y. Kim and H. Lin, “Human activity classification based on micro-Doppler signatures using a support vector machine,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1328–1337, May 2009. [38] J. A. Nanzer, “A review of microwave wireless techniques for human presence detection and classification,” IEEE Trans. Microw Theory Techn., vol. 65, no. 5, pp. 1780–1794, May 2017. [39] M. Zhao et al., “Through-wall human pose estimation using radio signals,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7356–7365. [40] W.-C. Su, X.-X. Wu, T.-S. Horng, M.-C. Tang, “Hybrid continuous-wave and self-injection-locking monopulse radar for posture and fall detection,” IEEE Trans. Microw. Theory Techn., vol.70, no.3, pp.1686–1695, Mar. 2022. [41] W. A. Ahmad and X. Yi, “How Will Radar Be Integrated Into Daily Life?: mm-wave radar architectures for modern daily life applications,” IEEE Microw. Mag., vol. 23, no. 5, pp. 30–43, May 2022. [42] D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag., vol. 41, no. 7, pp. 66–74, Jul. 2003. [43] T. Zasowski, F. Althaus, M. Stager, A. Wittneben, and G. Troster, “UWB for noninvasive wireless body area networks: channel measurements and results,” in Proc. IEEE Conf. Ultra Wideband Syst. Technol., Nov. 2003, pp. 285–289. [44] A. Alomainy, Y. Hao, X. Hu, C. G. Parini and P. S. Hall, “UWB on-body radio propagation and system modeling for wireless body-centric networks,” in Proc. IEEE Commun., vol. 153, no. 1, Feb. 2006, pp. 107–114. [45] D. Zito, D. Pepe, M. Mincica, F. Zito, D. D. Rossi, A. Lanata, E. P. Scilingo, and A. Tognetti, “Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: patent status,” in Proc. IEEE Eng. Med. Biol. Soc. Ann. Int. conf., Aug. 2008, pp. 5274–5277. [46] I. Immoreev and T.-H. Tao, “UWB radar for patient monitoring,” IEEE Aerosp. Electron. Syst. Mag., vol. 23, no. 11, pp. 11–18, Nov. 2008. [47] D. Zito, D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanata, and D. D. Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 503–510, Dec. 2011. [48] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 44, no. 6, pp. 428–435, Jun. 1997. [49] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with dc offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073–1079, May 2007. [50] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 567–570. [51] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin and G. T. A. Kovacs, “Range correlation effect on ISM band I/Q CMOS radar for non-contact sensing of vital signs,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, Jul. 2003, pp. 1945–1948. [52] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004. [53] C. Gu, Z. Peng, and C. Li, “High-precision motion detection using low-complexity Doppler radar with digital post-distortion technique,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 961–971, Mar. 2016. [54] S. Guan, J. A. Rice, C. Li, and C. Gu, “Automated dc offset calibration strategy for structural health monitoring based on portable CW radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3111–3118, Dec. 2014. [55] M. Zakrzewski, H. Raittinen, and J. Vanhala, “Comparison of center estimation algorithms for heart and respiration monitoring with microwave Doppler radar,” IEEE Sensors J., vol. 12, no. 3, pp. 627–634, Mar. 2012. [56] W. Xu, C. Gu, C. Li, and M. Sarrafzadeh, “Robust Doppler radar demodulation via compressed sensing,” Electron. Lett., vol. 48, no. 22, pp. 1428–1430, Oct. 2012. [57] B.-K. Park, A. Vergara, O. Boric-Lubecke, V. Lubecke, and A. Høst-Madsen, “Quadrature demodulation with dc cancellation for a Doppler radar motion detector,” 2007. [Online]. Available: http://www-ee.eng. hawaii.edu/~madsen/Anders_Host-Madsen/Publications_2.html [58] X. Gao and O. Boric-Lubecke, “Radius correction technique for Doppler radar noncontact periodic displacement measurement,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 621–631, Feb. 2017. [59] N. Chernov and C. Lesort, “Least squares fitting of circles,” J. Math. Imagine Vision, vol. 23, no. 3, pp. 239–252, Nov. 2005. [60] C.-C. Chou, W.-C. Lai, Y.-K. Hsiao, and H.-R. Chuang, “60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1635–1643, Mar. 2018. [61] T.-Y.-J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649–1659, Apr. 2013. [62] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464–4471, Dec. 2006. [63] C. Gu, C. Li, J. Lin, J. Long, J. Huangfu, and L. Ran, “Instrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1580–1588, Jun. 2010. [64] I. Mostafanezhad, O. Boric-Lubecke, and V. Lubecke, “A coherent low IF receiver architecture for Doppler radar motion detector used in life signs monitoring,” in Proc. IEEE Radio Wireless Symp., New Orleans, LA, USA, Jan. 2010, pp. 571–574. [65] I. Mostafanezhad and O. Boric-Lubecke, “Benefits of coherent low-IF for vital signs monitoring using Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2481–2487, Oct. 2014. [66] C. Wei and J. Lin, “Digitally assisted low IF architecture for noncontact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1–4. [67] H. Zhao, H. Hong, L. Sun, Y. Li, C. Li, and X. Zhu, “Noncontact physiological dynamics detection using low-power digital-IF Doppler radar,” IEEE Trans. Instrum. Meas., vol. 66, no. 7, pp. 1780–1788, Jul. 2017. [68] X. Ma, L. Li, X. You, and J. Lin, “Envelope detection for a double-sideband low IF CW radar,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2018, pp. 240–243. [69] X. Ma, L. Li, S. Ming, X. You, and J. Lin, “Envelope detection for an ADC-relaxed double-sideband low-IF CW Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5833–5841, Dec. 2018. [70] E. Yavari and O. Boric-Lubecke, “Low IF demodulation for physiological pulse Doppler radar,” in Proc. IEEE MTT-S Int. Microw. Symp., Jul. 2014, pp. 1–3. [71] X. Ma, Y. Wang, W. Song, X. You, J. Lin, and L. Li, “A 100-GHz double-sideband low-IF CW Doppler radar in 65-nm CMOS for mechanical vibration and biological vital sign detections,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2019, pp. 136–139. [72] X. Ma et al., “Design of a 100-GHz double-sideband low-IF CW Doppler radar transceiver for micrometer mechanical vibration and vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 2876–2890, Jul. 2020. [73] M. I. Skolnik, “CW and frequency-modulated radar,” in Introduction to Radar Systems, 3rd ed. New York, NY, USA: McGraw-Hill, 2001, pp. 68–100. [74] L. Ren, L. Kong, F. Foroughian, H. Wang, P. Theilmann, and A. E. Fathy, “Comparison study of noncontact vital signs detection using a Doppler stepped-frequency continuous-wave radar and camerabased imaging photoplethysmography,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3519–3529, Sep. 2017. [75] M. Camponeschi, A. Bevilacqua, M. Tiebout, and A. Neviani, “A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 141–143, Mar. 2012. [76] P. L Beasley, “The influence of transmitter phase noise on FMCW radar performance,” in Proc. Eur. Radar Conf., Manchester, U.K., Sep. 2006, pp. 1810–1813. [77] Y. Wang, Q. Liu, and A. E. Fathy, “CW and pulse–Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 3097–4007, May 2013. [78] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes that monitor breathing and heart rate,” in Proc. ACM Conf. Hum. Factors Comput. Syst., pp. 837–846. Apr. 2015. [79] H. Lee, B.-H. Kim, J.-K. Park, and J.-G. Yook, “A novel vital-sign sensing algorithm for multiple subjects based on 24-GHz FMCW Doppler radar,” Remote Sens., vol. 11, no. 10, pp. 1237, May 2019. [80] A. Meta, P. Hoogeboom, and L. P. Ligthart, “Signal processing for FMCW SAR,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3519–3532, Nov. 2007. [81] S. Scheiblhofer, S. Schuster, and A. Stelzer, “High-speed FMCW radar frequency synthesizer with DDS based linearization,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 397–399, May 2007. [82] S. Scheiblhofer, S. Schuster, and A. Stelzer, “Signal model and linearization for nonlinear chirps in FMCW Radar SAW-ID tag request,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1477–1483, Jun. 2006. [83] M. Hitzler et al., “Ultracompact 160-GHz FMCW radar MMIC with fully integrated offset synthesizer,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1682–1691, May 2017. [84] I. M. Milosavljevic et al., “A SiGe highly integrated FMCW transmitter module with a 59.5–70.5-GHz single sweep cover,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 9, pp. 4121–4133, Sep. 2018. [85] S. Balon, K. Mouthaan, C.-H. Heng, and Z. N. Chen, “A C-band FMCW SAR transmitter with 2-GHz bandwidth using injection-locking and synthetic bandwidth techniques,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 11, pp. 5095–5105, Nov. 2018. [86] K. Wang, J.-F. Gu, F. Ren, and K. Wu, “A multitarget active backscattering 2-D positioning system with superresolution time series postprocessing technique,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1751–1766, May 2017. [87] S. Kim and K.-K. Lee, “Low-complexity joint extrapolation-MUSIC-based 2-D parameter estimator for vital FMCW radar,” IEEE Sensors J., vol. 19, no. 6, pp. 2205–2216, Mar. 2019. [88] A. B. Baral and M. Torlak, “Impact of number of noise eigenvectors used on the resolution probability of MUSIC,” IEEE Access, vol. 7, pp. 20023–20039, Jan. 2019. [89] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010. [90] F.-K. Wang, C.-T. Wu, T.-S. Horng, C.-H. Tseng, S.-H. Yu, C.-C. Chang, P.-H. Juan, and Y. Yuan. “Review of self-injection-locked radar systems for noncontact detection of vital signs,” IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 4, no. 4, pp. 294–307, Dec. 2020. [91] F.-K. Wang et al., “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3577–3587, Dec. 2011. [92] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Phase- and self-injection- locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685–695, Jan. 2013. [93] M. Pontón and A. Suárez, “Wireless injection locking of oscillator circuits,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4646–4659, Dec. 2016. [94] K. Peng, C. Lee, D. Wong, F. Wang and T. Horng, “Low phase noise and wideband oscillators using injection- and frequency-locked loop technique,” in IEEE Int. Radio-Freq. Integr. Technol. Symp. Dig., Sep. 2017, pp. 129–131. [95] C.-H. Tseng, L.-T. Yu, J.-K. Huang and C.-L. Chang, “A wearable self-injection-locked sensor with active integrated antenna and differentiator-based envelope detector for vital-sign detection from chest wall and wrist,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2511–2521, May 2018. [96] C.-H. Tseng and Y. Lin, “24-GHz self-injection-locked vital-sign radar sensor with CMOS injection-locked frequency divider based on push–push oscillator topology,” IEEE Microw. Compon. Lett., vol. 28, no. 11, pp. 1053–1055, Nov. 2018. [97] B.-E. Seow, S.-T. Lin, T.-H. Huang and H.-R. Chuang, “Injection pulling mitigation in CMOS voltage-controlled oscillator using a novel honeycomb-shaped planar inductor,” IEEE Trans. Circuits-II, vol. 66, no. 1, pp. 6–10, Jan. 2019. [98] S.-H. Yu and T.-S. Horng, “Highly linear phase-canceling self-injection-locked ultrasonic radar for non-contact monitoring of respiration and heartbeat,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 1, pp. 75–90, Feb. 2020. [99] Y.-C. Chiu, F.-K. Wang, Y.-R. Chou, and T.-S. Horng, “Wearable Doppler radar health monitor with gesture control,” in Proc. Asia-Pacific Microw. Conf., Nov. 2014, pp. 944–946. [100] F.-K. Wang, Y.-R. Chou, Y.-C. Chiu, and T.-S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931–2940, Dec. 2015. [101] F.-K. Wang, M.-C. Tang, S.-C. Su, and T.-S. Horng, “Wrist pulse rate monitor using self-injection-locked radar technology,” Biosensors, vol. 6, no. 4, pp. 54–65, Oct. 2016. [102] C.-Y. Hsu, L.-T. Hwang, F.-K. Wang, and T.-S. Horng, “Wearable vital sign sensor using a single-input multiple-output self-injection-locked oscillator tag,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2018, pp. 248–251. [103] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Combining SIL tag and IL receiver for concurrent vital sign and position sensing,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, Jun. 2013, Section TU2B-2, pp. 1–4. [104] R. E. Arif, M.-C. Tang, W.-C. Su, T.-S. Horng, F.-K. Wang, and C.-H. Tseng, “Designing a metasurface-based tag antenna for wearable vital sign sensors,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2019. Section Tu4C-4, pp. 1–4. [105] C.-H. Tseng and L.-T. Yu, “Self-injection-locked radar sensor with active-integrated antenna and differentiator-based demodulator for noncontact vital sign detection,” in Proc. IEEE Top. Conf. Sensors Sensor Netw., Anaheim, CA, Jan. 2018, pp. 27–29. [106] C.-Z. Wu and C.-H. Tseng, “A perturbation-injection-locked sensor with self-oscillating active CSRR for vital-sign detection from fingertip,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2019. pp. 369–372. [107] Y. Yuan, C. Lu, A. Y.-K. Chen, C.-H. Tseng, and C.-T. M. Wu, “Noncontact multi-target vital sign detection using self-injection-locked radar sensor based on metamaterial leaky wave antenna,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, Jun. 2019. pp. 148–151. [108] Y. Yuan, C. Lu, A. Y.-K. Chen, C.-H. Tseng, and C.-T. M. Wu, “Multi-target concurrent vital sign and location detection using metamaterial-integrated self-injection-locked quadrature radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 12, pp. 5429–5437, Dec. 2019. [109] W.-C. Su, M.-C. Tang, R. E. Arif, T.-S. Horng, and F.-K. Wang, “Single conversion stepped-frequency continuous-wave radar using self-injection-locking technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2019. Section Tu4G-4, pp. 1–4. [110] W.-C. Su, M.-C. Tang, R. E. Arif, T.-S. Horng, and F.-K. Wang, “Stepped-frequency continuous-wave radar with self-injection-locked technology for monitoring multiple human vital signs,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 12, pp. 5396–5405, Dec. 2019. [111] C.-H. Tseng and L.-T. Yu, “Self-injection-locked AIA radar sensor using PLL demodulation for noncontact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, Jun. 2018, pp. 252–254. [112] P.-H. Wu, F.-H. Chuang, and P. Hsu, “A 5.8 GHz phase- and self-injection-locked CMOS radar sensor chip for vital sign detector miniaturization,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, May 2016. pp. 1–3. [113] M.-C. Tang, C.-Y. Kuo, D.-C. Wun, F.-K. Wang, and T.-S. Horng, “A self- and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4812–4822, Dec. 2016. [114] M.-C. Tang, F.-K. Wang, and T.-S. Horng, “A single radar-based vital sign monitoring system with resistance to large body motion,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, Jun. 2017. Section WE2G-2, pp. 1–4. [115] M.-C. Tang, F.-K. Wang, and T.-S. Horng, “Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 5324–5333, Dec. 2017. [116] C.-H. Tseng and C.-Z. Wu, “A novel microwave phased- and perturbation-injection-locked sensor with self-oscillating complementary split-ring resonator for finger and wrist pulse detection,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1933–1942, May 2020. [117] Y.-S. Su, C.-C. Chang, J.-M. Kuo, and S.-F. Chang, “Design of a short-range radar system for wing-beat frequency detection,” in IEEE MTT-S Int. Microw. Symp. Dig., May. 2015. pp. 1–3. [118] Y.-S. Su, C.-C. Chang, J.-C. Kuo, and J.-M. Kuo, “Design of self-injection-locked radar system for birds’ wingbeat frequency detection,” IEEE Sensors J., vol. 18, no. 24, pp. 10010–10017, Dec. 2018. [119] K.-C. Peng, C.-H. Lee, D.-G. Wong, F.-K. Wang and T.-S. Horng, “An Injection- and Frequency-Locked Loop for Reducing Phase Noise of Wideband Oscillators,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1374–1383, Mar. 2018. [120] K.-C. Peng, W.-L. Wu and J.-H. Lin, “Reduction of Phase Noise in Fractional-N Frequency Synthesizer Using Self-Injection Locking Loop,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 9, pp. 3724–3731, Sep. 2020. [121] F.-K. Wang, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Displacement monitoring system based on a quadrature self-injection-locked radar technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 1363–1366. [122] F.-K. Wang, T.-S. Horng, J.-Y. Shih, Z.-J. Hsu, W.-C. Su and P.-H. Juan, “See-Through-Wall (STW) Life Detector Using Self-Injection-Locked (SIL) Technology,” in Proc. IEEE Asia-Pacific Microw. Conf., Dec. 2020, pp. 496–498. [123] P.-H. Juan, K.-H. Chen, and F.-K. Wang, “Frequency-offset self-injection-locked (FOSIL) radar for noncontact vital sign monitoring,” in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Aug. 2020, pp. 643–646. [124] Y. Gao, M. J. Brennan, P. F. Joseph, J. M. Muggleton, and O. Hunaidi, “A model of the correlation function of leak noise in buried plastic pipes,” J. Sound Vibrat., vol. 277, no. 1, pp. 133–148, Aug. 2003. [125] M. Ahadi and M. S. Bakhtiar, “Leak detection in water-filled plastic pipes through the application of tuned wavelet transforms to Acoustic Emission signals,” Appl. Acoust., vol. 71, no. 7, pp. 634–639, Feb. 2010. [126] F.-K. Wang, J.-Y. Shih, P.-H. Juan, Y.-C. Su, Y.-C. Wang, “Non-Invasive Cattle Body Temperature Measurement Using Infrared Thermography and Auxiliary Sensors,” Sensors, vol. 21, no. 7, Apr. 2021. [127] P. M. Bach and J. K. Kodikara, “Reliability of infrared thermography in detecting leaks in buried water reticulation pipes,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 9, pp. 4210–4224, Sep. 2017. [128] M. Yahia, R. Gawai, T. Ali, M. M. Mortula, L. Albasha and T. Landolsi, “Non-destructive water leak detection using multitemporal infrared thermography,” IEEE Access, vol. 9, pp. 72556–72567, May 2021. [129] O. Hunaidi and P. Giamou, “Ground-penetrating radar for detection of leaks in buried plastic water distribution pipes,” in Proc. Int. Conf. Ground Penetrating Radar, May 1998, pp. 783–786. [130] S. Demirci, E. Yigit, I. H. Eskidemir, and C. Ozdemir, “Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method,” NDT and E Int., vol. 47, pp. 35–42, Apr. 2012. [131] E. Pasolli, F. Melgani and M. Donelli, “Automatic Analysis of GPR Images: A Pattern-Recognition Approach,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2206–2217, Jul. 2009. [132] M. C. Dobson, F. T. Ulaby, M. T. Hallikainen, and M. A. El-Rayes, “Microwave dielectric behavior of wet soil – part II: dielectric mixing models,” IEEE Trans. Geosci. Remote Sens., vol. GE-23, no. 1, pp. 35–46, Jan. 1985. [133] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. John Wiley & Sons, Inc., 2013. [134] S. Djukanović and V. Popović -Bugarin, “Efficient and accurate detection and frequency estimation of multiple sinusoids,” IEEE Access, vol. 7, pp. 1118–1125, Dec. 2018. [135] B. Mamandipoor, D. Ramasamy, and U. Madhow, “Newtonized orthogonal matching pursuit: frequency estimation over the continuum,” IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5066–5081, Oct. 2016 [136] U. J. Schwarz, “Mathematical-statistical description of the iterative beam removing technique (method CLEAN),” Astron. Astrophys., vol. 65, pp. 345–356, Apr. 1978. [137] T. H. Lee, “Phase noise,” in The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2004. [138] L. Ren, Y. S. Koo, H. Wang, Y. Wang, Q. Liu, and A. E. Fathy, “Noncontact multiple heartbeats detection and subject localization using UWB impulse Doppler radar,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 690–692, Oct. 2015. [139] S. Wu et al., “Study on a novel UWB linear array human respiration model and detection method,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 1, pp. 125–140, Jan. 2016. [140] G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2812–2822, Nov. 2014. [141] H. Lee, B.-H. Kim, and J.-G. Yook, “Path loss compensation method for multiple target vital sign detection with 24-GHz FMCW radar,” in Proc. IEEE Asia–Pacific Conf. Antennas Propag., Aug. 2018, pp. 100–101. [142] S. Nahar, T. Phan, F. Quaiyum, L. Ren, A. E. Fathy, and O. Kilic, “An electromagnetic model of human vital signs detection and its experimental validation,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 2, pp. 338–349, Jun. 2018. [143] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang and T.-S. Horng, “Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods,” IEEE Sensors J., vol. 19, no. 5, pp. 1905–1916, Mar. 2019. [144] P.-H. Juan, K.-H. Chen and F.-K. Wang, “Frequency-offset self-injection-locked radar with digital frequency demodulation for SNR improvement, elimination of EMI issue, and DC offset calibration,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 1149–1160, Jan. 2021. [145] F.-K. Wang, J.-X. Zhong, P.-H. Juan, C.-T. Chen, and Y.-W. Tsai, “Single-conversion self-injection-locked radar for underground pipeline leak detection,” Sensors J., to be published. [146] F.-K. Wang, P.-H. Juan, D.-M. Chian and C. -K. Wen, “Multiple range and vital sign detection based on single-conversion self-injection-locked hybrid mode radar with a novel frequency estimation algorithm,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1908–1920, May 2020. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2027-10-19 校外 Off-campus:開放下載的時間 available 2027-10-19 您的 IP(校外) 位址是 3.144.47.115 現在時間是 2024-11-22 論文校外開放下載的時間是 2027-10-19 Your IP address is 3.144.47.115 The current date is 2024-11-22 This thesis will be available to you on 2027-10-19. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2027-10-19 |
QR Code |